Делаем GSM-сигналку из сотового. Автомобильная сигнализация схема Датчик качения для автосигнализации своими руками

Датчик колебаний. Вариант 1.

Описанная ниже схема датчика механических колебаний применяется в различных цифровых устройствах охранной сигнализации автомобиля. В качестве чувствительного элемента можно использовать любой стрелочный индикатор уровня записи от какого-нибудь старенького кассетного магнитофона.

Правда, перед использованием его необходимо немного доработать:

Аккуратно по склейке вскрываем лезвием индикатор;
На кончик стрелки нанижем и закрепим кусочек трубчатого припоя длиной 4 мм, внутренность которого освобождена от флюса или канифоли.
По обеим сторонам шкалы, в качестве демпферов - ограничителей, приклеим небольшие прямоугольные кусочки поролона.
Соберем индикатор, восстановим склейку.

Таким образом, наш индикатор превратился в датчик колебаний.
Ниже приведена принципиальная схема устройства.

Здесь РА1 - микроамперметр М476/1 с утяжеленной стрелкой, он является чувствительным элементом датчика. Когда стрелка начинает колебаться – она перемещает рамку в магнитном поле, и в обмотке рамки возникает электрическое напряжение.

Сигнал с рамки датчика поступает на вход аналого-цифрового компаратора DA1, где он усиливается и приводится к цифровому стандарту. Конденсатор С2 демпфирует колебания (звон) на выходе компаратора при переключении выходного напряжения. Резистором R3 регулируется пороговое напряжение (чувствительность) датчика таким образом, чтобы он не реагировал на малые колебания кузова, не связанные со вскрытием или угоном автомобиля.

Крепление датчика производится в подкапотном пространстве таким образом, чтобы утяжеленный конец стрелки микроамперметра смотрел вниз, а ось качания располагалась вдоль автомобиля, хотя в некоторых статьях про подобные устройства ось качания располагают и поперек.

Ток, потребляемый датчиком при +Uпит =5 В, не превышает 1,5 мА.

Второй вариант датчика колебаний кузова.

Предлагаемый датчик реагирует на наклоны, качку кузова, удары и вибрацию кузова автомобиля. Этот датчик более универсален, чем штатные датчики удара автосигнализаций, которые реагируют только на удары и резкую вибрацию. Приведенный ниже вариант можно использовать вместо штатного датчика.

Как и в первом варианте в качестве чувствительного элемента используется магнитная рамка микроамперметра М476/1 контроля уровня записи кассетного магнитофона. Ее также подготавливают по вышеописанной методике (утяжеляют стрелку и наклеивают демпферы из поролона). Устанавливают в потайном месте салона автомобиля так, чтобы ось вращения рамки микроамперметра была параллельна направлению движения автомобиля, а стрелка с грузом направлена вниз.

Принципиальная электрическая схема.

В1 – микроамперметр М476/1. Полярность подключения значения не имеет. Колебания магнитного поля, наводимые в рамке микроамперметра усиливаются операционным усилителем КР140УД1208. При достижении выходного напряжения операционного усилителя порога переключения логического элемента D2.3 на выходной разъём поступает сигнал тревоги 1-го уровня, при котором "ревун" сигнализации издает короткий звук. На элемент D2.1 сигнал не проходит потому, что его часть падает на диодах VD1 и VD2, не позволяя элементу D2.1 открыться. В случае сильного раскачивания кузова автомобиля и появления на выходе операционного усилителя сигнала большой амплитуды (большого уровня), элемент D2.1 переключается, и на выходном разъёме появляется сигнал тревоги 2-го уровня, при котором "ревун" сигнализации издает длительный непрерывный звук.

Элементы R10,VD3,C2 –понижающий стабилизатор питания 9 вольт.
Резистором R2 производится настройка чувствительности датчика колебаний.
Микросхема D2 - КМОП типа К176ЛА7.

Спаренный переключатель S1 предназначен для возможного подключения к любому типу автомобильной сигнализации, как с нормально замкнутыми контактами, так и нормально разомкнутыми.

Предлагаемый датчик можно подключить не только к дополнительному разъёму, но и в параллель к штатному датчику, а также параллельно дверным выключателям освещения салона. Для этого, на выходе схемы необходимо использовать буферные транзисторные каскады.

Стандартная автомобильная сигнализация представляет собой совокупность таких устройств, как:

Все это работает во взаимосвязи друг с другом. Основной блок обменивается данными с брелоками, отвечает за обработку полученной информации и производит определенные действия, к примеру, отправляет электрический импульс на запирающие реле дверей, запускает сигнальную сирену и пр.

Также главный блок получает с датчиков информацию и в зависимости от ее характера выполняет заданные действия. Функциональность автомобильной сигнализации зависит во многом от количества и типа используемых датчиков, которые подключены к блоку.

Существуют модели сигнализаций с определенными дополнительными датчиками в комплекте, но в основном компании комплектуют устройства стандартным набором, который реагирует на заданные сценарии. По этой причине при покупке защитной противоугонной системы важно обращать внимание на комплектацию. Не ленитесь поинтересоваться, совместима ли ваша автосигнализация с разными датчиками, которые можно докупить отдельно.


Датчики, называемые также сенсорами, различаются по назначению и типу. Ниже мы рассмотрим разновидности датчиков, которые входят в стандартную комплектацию и продаются отдельно.

Контактные датчики

Они срабатывают при открытии капота, дверей или багажника. Другими словами, контактный датчик представляет собой кнопку, рабочий режим которой сохраняется при нажатии. При открытии происходит замыкание электроцепи, а на главный блок отправляется импульс, запускающий световой или звуковой сигнал.

Называемое также шок-сенсором это устройство реагирует на резкие вибрации или удары. Подобные датчики обычно имеются в базовой комплектации. Недорогие датчики основываются на принципе электромагнитной индукции, а современные надежные шок-сенсоры представляют собой световые приборы, которые срабатывают за счет отклонения лазерного луча на определенную величину.

Датчик наклона

Этот сенсор активизируется при изменении горизонтального положения авто в пространстве. Такое случается в следующих случаях:

  • покачивание;
  • наклон;
  • поднятие авто на домкрате.

Датчик предотвращает незаконное перемещение автомобиля, кражу колес и другие несанкционированные действия.

Он реагирует на появление движущихся объектов в салоне. Это второй рубеж охраны, которые предназначен для забывчивых автомобилистов, которые деактивировали или забыли включить автосигнализацию, а в салон попал посторонний человек.

Акустические датчики

Эти сенсоры отправляют главному блоку информацию при возникновении резких шумов. Они способны реагировать на высокочастотные звуки при разбитии стекла, металлические звуки и пр.

Диагностические датчики

Называемые также сервисными эти сенсоры являются необходимым компонентом автомобильных сигнализаций. Устройства следят за параметрами напряжения, определяют изменения силы тока в цепях. Они предотвращают самопроизвольное выключение системы из-за снижения заряда АКБ или действий злоумышленников, направленных на обесточивание энергетических систем авто или на их вывод из строя.

На этом датчике, называемом также микроволновым, мы остановимся поподробнее. Это устройство пришло на замену выше упомянутому датчику движения, но в отличие от него оно не реагирует на росу, мух, температурные перепады, поэтому очень популярно. Также вы можете настраивать его чувствительность.

Датчики объема могут быть многоуровневыми. В основном в продаже встречаются 2-уровневые системы. Как у двухуровневых датчиков удара у них один сигнал предупреждающий, а второй включает систему оповещения.

В зависимости от принципа действия автосигнализации, ее производителя и фантазии человека, который занимался установкой, иногда монтируют несколько датчиков объема:

  • в салон;
  • в багажник;
  • под капот.

В основном они одноуровневые. Но случается такое, что их единственный сигнал только предупреждает отдельный датчик оповещения, которые с учетом настроек после определенного количества предупреждения срабатывает, включая систему оповещения.

Такие системы стоят сравнительно дорого, поэтому при монтаже бюджетных и средних по цене систем в основном устанавливают один 2-уровневый датчик объема, покупаемый чаще всего отдельно, так как его нет обычно в комплекте.

В системах начального уровня такой сенсор почти не используется, так как в изготовлении этих приспособлений процесс направлен на удешевление продукции, а не на улучшение качества. Изредка в дешевых системах производитель предусматривает отдельный разъем под датчик объема.

Независимо от преимуществ датчика объема перед сенсором удара, у него есть недостатки:

  • сравнительно высокая стоимость;
  • в ходе проливного дождя датчик может среагировать на стекающую по стеклу воду и сработать;
  • при уменьшении температуры окружающей среды чувствительность сенсора возрастает.

Последний фактор сильно усложняет процесс настройки системы. Кроме того, именно поэтому зимой повышается риск ложных срабатываний. Устанавливаются датчики объема обычно где-то возле центрального плафона салонного освещения.

Бывают случаи, когда эти сенсоры оказываются в совершенно иных местах:

  • возле ручника;
  • под консолью;
  • под панелью приборов и в других местах.

Для установки его в то место, где он должен быть, необходимо демонтировать обшивку потолка, что сделать очень непросто.

Таким образом, недобросовестные монтажники просто часто устанавливают датчик в том месте, где им удобно, но где сенсор не работает должным бразом. Приборная панель и консоль возле ручника изготовлены обычно из пластмассы, которая прозрачна для микроволн, которые ищут металлические элементы на своем пути (они выступают в роли своеобразного экрана).

Таким образом вы должны проследить за тем, где будет расположен датчик объема после установки автосигнализации. Не стоит ждать правильной его работы, если монтажники прикрепят его под сиденье, под приборную панель или в дверь.

Практически каждый владелец автомобиля, оборудованного сигнализацией, знаком с ситуацией, когда охранная система считает своим долгом сработать от любого сильного и близкого источника вибрации. В общем-то, такие случаи не считаются чем-то необычным и при их достаточно редком появлении они особо не напрягают ни самого автолюбителя, ни окружающих. Несколько иначе все обстоит тогда, когда стоянка автомобиля находится неподалеку от стройки (со всеми сопутствующими в виде отбойных молотков, компрессоров, механизмов для забивки свай и пр.) или, вообще, поблизости от военного аэродрома, на котором базируются реактивные истребители. Тут уж сигнализация начинает «завывать» с раздражающей частотой и владелец авто вынужден либо выводить чувствительность датчика удара на самый нижний предел (такая настройка перестает быть помехой для многих «специалистов» по снятию колес) либо идти на полное отключение охранной системы. Казалось бы, положение безвыходное, однако решение проблемы все-таки есть и заключается оно в использовании вместо (или параллельно ему) штатному датчику удара, другой измерительный элемент, регистрирующий не только вибрацию и удары различного уровня, но также и наклоны кузова автомобиля (при посадке водителя, установке домкрата, открытии багажника, снятии внешней запаски и т.т.д.).

Первый вариант датчика колебаний

Даже в наши дни различные измерительные и бытовые приборы используют не цифровые, а стрелочные индикаторы, работа которых основана на измерении тока проходящего через катушку, в результате чего образовывалось переменное магнитное поле, взаимодействующее с полем постоянного магнита и разворачивающее, таким образом, измерительный элемент снабженный стрелкой. Как оказалось подобные стрелочные миллиамперметры в состоянии успешно функционировать в реверсивном режиме, иначе говоря, если катушка будет физически перемещаться в поле постоянного магнита (например, при изменении вектора силы тяжести) - в ее витках сгенерируются небольшие токи, которые достаточно просто измерить.

В целом, идея состоит в размещении миллиамперметра в перевернутом состоянии, когда стрелка, снабженная небольшим грузом, начинает играть роль своеобразного маятника, при перемещении которого на выходах прибора появляется пропорциональное напряжение. Для усиления такого выходного сигнала понадобиться создать достаточно простую схему с привлечением минимума комплектующих элементов.


В качестве груза, прикрепленного к концу стрелки, можно использовать небольшой участок изоляции от провода соответствующего диаметра. Если применить два миллиамперметра, установленных под углом 90° по отношению друг к другу, и соединить их последовательно - появляется возможность регистрировать колебания по двум осям. В качестве основы для схемы используется операционный усилитель 741 серии (или его аналог). При помощи переменного резистора номиналом 4,7 кОм осуществляется изменение чувствительности датчика в достаточно широких пределах. Что касается типа используемого миллиамперметра, то его здесь выбор некритичен, главное чтобы последовательно с катушкой не был бы подключен резистор (впрочем, его можно просто удалить). При желании датчик можно запитать от автономной батареи. Выходной сигнал снимается между точками «ОС» и плюсом источника питания.

Второй вариант датчика колебаний

В данном случае в качестве источника сигналов предлагается применить магнитную рамку микроамперметра М476/1 в прошлые года повсеместно используемой в качестве измерителя уровня записи на многих магнитофонах, в том числе и на переносных кассетниках. Для изготовления датчика такой микроамперметр следует вскрыть (такую операцию можно сделать при помощи обычного ножа).

Далее, на конец стрелки одевается и закрепляется соответствующий груз (по весовым параметрам прекрасно подойдет кусочек трубчатого припоя диаметром 3мм и длиной в 5мм). Необходимо проследить за тем, чтобы между шкалой и грузом оставалось расстояние не менее 1,5мм. Края шкалы ограничиваем демпферами из мягкого поролона (5х5х5 мм) после чего корпус микроамперметра вновь склеиваем в одно целое.

Ниже приведена электрическая схема датчика колебаний:


Вполне понятно, что В1, в данном случае, - микроамперметр М476/1, причем полярность его подключения особого значения не имеет. В качестве основного усилителя сигнала, наводимого в рамке микроамперметра, используется операционник КР140УД1208. При незначительных колебаниях и достижении выходного напряжения операционного усилителя уровня, достаточного для срабатывания логического элемента D2.3 формируется сигнал тревоги первого уровня (на D2.1 сигнал отсутствует за счет падения напряжения на диодах VD1 и VD2). Сигнал тревоги второго уровня образуется при сильном раскачивании кузова автомобиля, когда создаются условия для срабатывания элемента D2.1. В роли сборки D2 можно применить микросхему К176ЛА7. Резистор R2 используется для подстройки чувствительности датчика. Переключатель S1 позволяет использовать датчик в охранных сигнализациях как с нормально разомкнутыми контактами, так и нормально замкнутыми.

Это очень интересная разработка простой сигнализации, основой для которой является датчик движения. Если подобрать подходящий чувствительный датчик, то можно настроить её на небольшие объекты, например, чтобы обнаружить кошку, которая запрыгнула на стол. В этом случае сигнализация моментально отпугнет животное и после нескольких повторов со срабатываниями, у неё выработается условный рефлекс на блокировку такого поведения. То есть, устройство становится автоматическим дрессировщиком для выработки реакции избегания.
Датчик движения, который будет использоваться для этой поделки, имеет три выхода. Короткие провод это плюс 5 вольт, средний – выход на 3,5 вольта. Общий провод левый.

Приобрести датчик дешевле можно в этом китайском магазине . Стоимость конкретно прибора из видео 1 доллар с небольшим. Также нужен любой транзистор npn. Понадобится резистор на 10 килоом. В качестве источника звукового сигнала выступит обычный домашний звонок. Его можно доработать, добавив регулятор громкости и кнопку включения и отключения.
Сначала нужно отпаять провод, который поступает на плюс.

Ниже схема устройства

Маркировка транзистора: база коллектор эмиттер. Припаиваем эмиттер к проводу, который был отпаян от плюса. Теперь резистор припаяем к среднему проводу датчика движения. Другой конец резистора припаяем к базе транзистора. Провод с обозначением земля, припаяем к земле, то есть к минусу. Провод, который ранее был удлинен, красного цвета на видео, нужно присоединить к плюсу. Батарейки, естественно, должны быть вынуты из устройства. Коллектор транзистора присоединяем к плюсу. Схема почти собрана, осталось только закоротить между собой провода, которые шли на кнопку звонка.
Датчик движения.
В его схеме есть два резистора. Один из них предназначен для регулировки выходного сигнала, после того, как сработает датчик. Можно регулировать до 200 секунд. А второй резистор регулирует дальность срабатывания в диапазоне от 2 до 5 метров.
Проведем эксперимент. Кошка пришла за рыбой. Сигнализация сработала.
Если нажать кнопку включения, сигнализация начинает издавать звук. Но она играет один раз, потом перестает и работает как обычная

Эта самодельная автомобильная сигнализация длительное время успешно эксплуатируется на автомобиле ВАЗ 21051. Она обеспечивает наблюдение за стеклами, колесами, дверями и крышкой капота и багажника. Включается автомобильная сигнализация с помощью кнопки, расположенной в салоне, а выключается с помощью дистанционного выключателя,выполненного в виде брелка для ключа зажигания.

Дальность действия этой конструкции без внешней антенны всего 50 метров, а вот с внешней антенной достигает и 1,5 километров. Схема автосигнализации реализована на трех модулях: датчике качения, электронном модуляторе на транзисторах VT2, VT3 и высокочастотном генераторе ЧМ диапазона. В режиме ожидания схема работает следующим образом: контакты датчика качения не замкнуты и питание от батареи поступает только на генератор высокой частоты.

Радиоприемник ЧМ диапазона, располагается на допустимом удалении и настраивается на рабочую частоту генератора охранной сигнализации, косвенным ориентиром правильной настройки считается исчезновение шума в приемнике.


Автомобильная сигнализация электрическая схема

Если произойдет срабатывание охранного датчика SA1, через его контакты подается питание на модулятор, который есть ни что иное, как мультивибратор. Он начинает генерировать колебания низкой частоты, которые через сопротивление R5 поступают на вход генератора высокой частоты и осуществляют модуляцию высокочастотного сигнала. В результате в динамике радиоприемника появляется резкий прерывистый тревожный сигнал. Несущая частота передатчика задается частотой резонатора Q1 и настраивается на стандартный диапазон УКВ 64 - 75 МГц или FM 88 - 108 МГц, что позволяет принимать сигнал на обычный радиоприемник

Связи между брелком и автомобильной сигнализацией происходит с помочью инфракрасных лучей. В дежурном режиме автомобильная сигнализация потребляет ток не более 10 мА. В течении одной минуты после нажатия кнопки включения сторож не реагирует на состояние датчиков. В это время можно без спешки закрыть все двери, багажник и капот. После окончания этого времени устройство переходит в дежурный режим и находится в этом состоянии до поступления сигнала от одного или нескольких датчиков.



Автомобильная сигнализация с дистанционным управлением схема

В стороже используются - один инерционный датчик, реагирующий на наклон кузова, который возникает при попытке или снятии колеса; три пьезоэлектрических датчика, которые реагируют на прикосновение инструмента к стеклам и кузову, датчики открывания дверей, в качестве которых используется дверные выключатели освещения салона. При поступлении сигнала от датчиков, сразу-же включается прерывистый звуковой сигнал,заучит около 45 секунд и затем система снова переходит в дежурный режим. Для отключения сторожа нужно последовательно нажать две кнопки на корпусе брелке.

Таким образом перелаются два кодовых слова даже если первое слово совпало при несовпадении второго слона информация о совпадении первого стирается. Так работает простейшая система зашиты от сканирования. Принципиальная схема изображена вв рисунке. В качестве инерционного датчика используется стрелочный индикатор от магнитофона с утяжеленной и перемененной в центр шкалы стрелкой В4. Ои включен между входами OYD 7. В таком включении получается максимальная чувствительность. ОУ включен по схеме интегратора, с его выхода, импульс возникающий при срабатывании (перемещением стрелки в результате наклона кузова)поступает на логическое устройство на микросхемах D8-D9.

Пьезоэлектрические «датчики сделаны из головок от старых монофонических ЭПУ типа 111-ЭПУ38 или других, можно стереофонических, но они крупнее и менее надежны. Сигнала от этих датчиков через регуляторы уровня срабатывания В29 - R31 поступают на двухкаскадный усилитель 34 сигнала на VT8 и VT9, с него на выпрямитель на VD21 hVD 22 и далее на усилитель постоянного тока на VT11 с коллектора которого импульс поступает на логическое устройство. Каскад на VT1O блокирует выпрямитель,и таким образом исключает возможность зацикливание сторожа от работы звукового сигнала.

Информация от дверных выключателей поступает на логическое устройство через переходной каскад на VT12, который исключает выход из строя микросхемы из-за подача на ее вход недопустимо высокого уровня или статического разряда. Цепь задержки перехода в ждущий режим после включения выполнена на D9.2 и D48C21 После включения уровень на выходе этого элемента равен нулю и держится на нуле до тех пор пока не зарядится С21. В это время импульсы с выхода D9.1 не могут изменить состояния на выходе D9.2. Одновибратор на D9.3 и DV.4 определяет время работы звукового сигнала, мультивибратор на D8.2 и D8.3 прерывает звуковой сигнал с частотой 1Гц.

Схема дистанционного выключения сделана на базе схемы дистанционного управления цветными телевизорами типа УСЦТ. Брелок сделан на микросхеме D1, которая используется в передатчиках систем управления. Для задания кода используются команды переключения 16-ти программ, используются две из них, в данном случае 4-я и 11-я.

Для выключения сигнализации нужно с начала нажать К1, а затем ее отпустить и нажать К2. Схема фотоприемника на транзисторах VT3-VT7 не отличается от аналогичной схемы УСЦТ. С его выхода последовательный импульсный сигнал поступает на микросхему D2,которая его преобразует в параллельный, соответствующий номеру включенной команды. Двоичный код с выхода D2 преобразуется в десятичный дешифратором на микросхеме D4 и D5.

К выходу которого подключена диодная матрица на VD4-VD17 которая распознает код. Включение и выключение питания логического устройства производится каскадом на VT15 и VT16, управление - триггерами на микросхеме D6, при нажатии на КЗ на схему кратковременно подается питание, СИ заряжается и своим зарядным током устанавливает триггеры на D6 в такое состояние, в котором на выходе ВВ.З формируется логический ноль, на базу VT16 поступает единица и транзистор VT15 открывается, шунтируя кнопку КЗ.

При правильной подаче первого кодового слова на вход "1“ D6.1 поступает единица и и триггер переключается в противоположное положение, освобождая триггер D6.3 и D6.4. Теперь достаточно правильно подать второе слово и триггер на D6.2 и DG.4 переключится в противоположное положение и выключит питание устройства Каждый раз когда набирается неправильный код сигнал с уровнем единицы с диодов VD4-VD17 поступает на вывод 6 D6.2 и устанавливает триггеры в положение, соответствующее нажатию КЗ. Для питания микросхемы 02 необходимо напряжение 18 вольт, автомобиль имеет бортсеть с номинальным напряжением 12 вольт недостающее напряжение в 6 вольт вырабатывает генератор на микросхеме D3.1-D3.4. Это мультивибратор с частотой 1 килогерц и ионным выходом к которому подключен выпрямитель на VD18VD19 со стабилизатором на VD20.

Конструктивно сторож сделан в виде трех блоков дистанционного выключателя, фотоприемника и основного блока. Датчиков может быть и больше, можно увеличить число пьезокерамических датчиков, включив несколько датчиков параллельно, можно ввести дополнительные контактные датчика, работавшие на замыкание на массу, включив их параллельно и черед диод к точке соединения R47 и VD23. В устройстве один пьезодатчик был смонтирован непосредственно в корпусе основного блока» Его корундовая игла соприкасалась с болтом шляпка которого торчит из дна корпуса основного болта.

При установке основного блока эта шляпка жестко прилегает к металлической нише переднего колеса. При ударе по кузову в любом месте или при прикосновении ключа к гайке колес акустические колебания распространяется по кузову м достигают этого датчика. Два других датчика вынесены за пределы корпуса основного блока и их иглы соприкасаются с передним и задними стеклами из салона. Положение инерционного датчика в корпусе выбирают таким, что бы при установке корпуса стрелка бывшего микроамперметра свисала вертикально вниз, а плоскость её перемещения проходила от одного переднего колеса к противоположному заднему (от левого переднего к правому заднему и наоборот).

Схему можно существенно упростить, если отказаться от дистанционного выключателя и для отключения использовать геркон расположенный в потайном месте, например возле внешнего зеркала заднего вида со стороны салона Электронную начиику брелка можно заменить постоянный магнитом. Геркон в этом случае подключается между выводом 13 и плюсом питания D6, между этим же выводои и общим проводом включить р«зисяор на 10 ком, а вывод 8 той же микросхемы соединить с выводом 6. Теперь для выключения сигнализации нужно поднести магнит к геркону.

Она, отличается от аналогичных устройств минимумом используемых деталей. Для него используется контактный датчик, в качестве которого можно использовать дверные выключатели освещения салона.

Автомобильная сигнализация алгоритм работы . Выходя из машины автосторож подключают к источнику питания (аккумулятору автомобиля) тумблером, расположенным в потайном месте. После включения следует выдержка времени около одной минуты. Это время нужно для закрывания дверей, капота и багажника (если и там установлены контактные датчики). После этой задержки схема переходит в дежурный режим. При открывании двери сторож переходит в рабочий режим, следует задержка в 5 секунд, которая даётся владельцу для отключения сигнализации изнутри при помощи потайного тумблера, затем, если тумблер не выключен, переходит в режим сигнализации, при котором в течении 20-ти секунд раздается прерывистый звук из сигнала автомобиля. После чего сторож переходит в дежурный режим.



Автомобильная сигнализация схема

При включении сторожа конденсатор С4 начинает заряжаться через резистор R5. При этом на вход элемента D1.5 через диод Д4 поступает нуль, и мультивибратор на D1.5 и D1.6 блокируется. После зарядки С4 (а на это уходит 1 минута) на катод Д4 поступает единица и поступления нуля на D1.5 прекращается. При замыкании контактов датчика, подключённого к Клеме "Д"на вход одновибратора на D1.3 и D1.4 поступает через Д2 нуль.

В результате на выходе одновибратора на выводе 6 микросхемы появляется единица, которая через цепь задержки поступает на катод диода ДЗ, и тот разрешает работу мультивибратора на D1.5 и 01.6. Цепь R4 С3 формирует задержку в 5 секунд. Прямоугольные импульсы, частотой 1гц с выхода мультивибратора поступают на ключ на транзисторах Т1 и Т2, в коллекторной цепи которого включена обмотка реле сигнала автомобиля. Использовать этот сторож в автонобиле с пряный включением сигнала (без реле) нельзя, для этого ключ нужно собрать по схеме с тиристором, или установить реле от другого автомобиля.

Время звучания сигнала зависит от цепи R3 С2, и после окончания этого времени схема переходит в ждущий режим. При использовании в качестве датчика дверных выключателей с использованием КМОП микросхем возникает возможность выхода из строя микросхемы, из-за подачи на её вход напряжения питания в то время, когда на выводы питания это напряжение не поступает. Такая ситуация возникает из-за возможности поступления бортового напряжения на вывод 1 микросхемы, когда сторож выключен. Для устранении этого эффекта используется цепь из диода Д1 и резисторов R1, R2, R7. При выключении питания сторожа высокое сопротивление кремниевого диода, включённого в обратном направлении и относительно низкое - параллельно включённых резисторов Rl R7 и R2 создают делитель, который понижает напряжение на выводе 1 микросхемы до безопасной величины.

Диод Д6 служит для защиты от неправильного подключения к источнику питания. Вместо микросхемы К564ЛН2 можно использовать К561ЛН2. Транзистор КТ315 можно заменить на КТ342, КТ3102 и даже на КТ815,Т2 может быть КТ817 или КТ819, не исключается использование КТ801 и КТ807. Ёмкости всех конденсаторов могут отличаться в некоторых пределах, даже в несколько раз, однако это изменит временные интервалы, выбранные в данной схеме, но их можно скорректировать подбором соответствующих резисторов.

Желательно использовать конденсаторы с небольшими токами утечки, особенно это важно для С 4 и С2, которые при значительной ёмкости работают в паре с высокоомными резисторами. В этом случае ток утечки может сделать невозможной работу сторожа. Сторож смонтирован в миниатюрном пластмассовом корпусе от детских счетных палочек и залит эпоксидным компаундом для предотвращения влияния сырости. Он располагается в незаметном месте под приборной панелью, там же размещается тумблер. Сторож может работать с другими датчиками, важно что бы при срабатывании на их выходе был нуль или отрицательный импульс.

Главным достоинством схемы автомобильной сигнализации является то, что для его работы не требуется установки датчиков и в простейшем варианте это небольшая коробка, к которой нужно подключить питание напряжением 9-14В, и разместить её в охраняемом объекте. В этом случае сторож будет реагировать на любое механическое воздействие на охраняемый объект включая удары, скрежет, прикосновение инструмента и др.

Принципиальная схема устройства изображена на рисунке ниже. В качестве датчика здесь используется конденсаторный микрофон с встроенным усилителем Ml. С его выхода сигнал поступает через регулятор чувствительности 12 на двухкаскадный УЗЧ на транзисторах Т4, Т5. С выхода усилителя сигнал поступает на диодный выпрямитель на диодах Д1 и Д2 и на транзисторный ключ на Т1. В результате в ждущем режиме на коллекторе Т1 единица, а при присутствии аккустического сигнала нуль.



Автомобильная сигнализация схема с радиоканалом

Собственно, логическое охранное устройство автомобильной сигнализации собрано на микросхемах Dl и D2. Импульс с коллектора Т1 поступает на блокируемый формирователь на элементах D1.1 и D1.2. С его выхода отрицательный импульс поступает на элемент D1.3. Функция этого элемента состоит в том, что бы создать задержку включения дежурного режима после включения питания в пределах 20-30 секунд. Эта задержка нужна для закрывания дверей объекта. При включения питания конденсатор С2 заряжается и его зарядный ток блокирует прохождение импульса через D1.3.

Время зарядки конденсатора определяется номиналом R3, и по его истечении на выводе 8 D1.3 устанавливается нуль. При срабатывании микрофонного датчика положительный импульс с выхода этого элемента поступает на вход одновибратора на С2.2 и D2.1. На выходе которого формируется положительный импульс, длительностью 15 секунд. Этот импульс через R9 поступает на транзисторный ключ Т7, который подаёт питание на однокаскадный УКВ ЧМ передатчик на транзисторе Т6, он имеет мощность 20 мвт и работает в УКВ радиовещательном диапазоне. При приёме на радиоприёмник с чувствительностью 10 мкв, он обеспечивает дальность в пределах видимости - около 150 метров. Этого достаточно для приёма сигнала на девятом этаже дома от автомобиля, стоящего во дворе.

Через Д4 одновибратор разрешает работу модулирующего мультивибратора на D2.3 и D2.4. С его выхода сигнал поступает на варикап Д5, включенный в контур передатчика. Одновременно этот сигнал поступает на ключ на транзисторах Т2 и ТЗ, к которому при капитальной установке подключается реле звукового сигнала. Для предотвращения зацикли -ванин сторожа единица с выхода одновибратора на D2.1 HD2.2 поступает через R2 на конденсатор С1, который заряжается и закрывает элемент D1.1 исключая прохождение через него импульса оот Т1 .

По окончании времени заданного цепью R8 С5 сигнализация прекращается сторож переходит в дежурный режим, но не сразу, некоторое время, в пределах одной двух секунд, уходит на разрядку С1 через R2, это необходимо для полного исключения зацикливания, которое может, например возникнуть из-за задержки разрыва контактов реле звукового сигнала, и по другой причине При капитальной установке используется выключатель на реле Р1 и герконе Гр1. Кнопка КН1 служит для включения сторожа. При нажатии на неё поступает напряжение на схему и реле, которое своими контактами дублирует кнопку,и находится в таком состоянии до тех пор, пока воздействием магнита на геркон реле не будет отключено, тогда его контакты разомкнутся и сторож будет выключен.

При капитальной установке имеет смысл закрепить металлический корпус микрофона на какой-либо металлической детали кузова, в таком случае микрофон не будет реагировать на посторонние шумы и автосигнализация будет срабатывать в случае прикосновения или удара (в зависимости от положения движка регулятора чувствительности R12) по кузову. Во время дождя рекомендуется установка небольшой чувствительности, в противном случае он сработает от ударов капель. Все элементы могут быть любого типа, катушка L1 не имеет каркаса, её диаметр 8мм, она содержит 6 витков провода ПЭВ 0,8. При настройке сторожа передатчик настраивают на свободный участок диапазона сжиманием или растягиванием витков катушки и подстройкой С15.

Подбором R7 и R11 нужно установить на коллекторах соответствующих транзисторов Т4 и Т5 напряжение 1,5В. При желании все временные задержки и периоды можно скорректировать подбором номиналов соответствующих резисторов.

Поделиться: