Назначение детали ось в машиностроении. Валы и оси назначение валы и оси предназначены

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Описание конструкции и назначение детали

Оси служат для поддержания вращающихся вместе с ними или на них различных деталей машин и механизмов. Вращение оси вместе с установленными на ней деталями осуществляется относительно ее опор, называемых подшипниками. Примером не вращающейся оси может служить ось блока грузоподъемной машины, а вращающейся оси - вагонная ось. Оси воспринимают нагрузку от расположенных на них деталей и работают на изгиб.

Конструкция оси, ее размеры и жесткость, технические требования, программа выпуска - основные факторы, определяющие технологию изготовления и применяемое оборудование.

Все шейки оси представляют собой поверхности вращения относительно высокой точности. Это определяет целесообразность применения токарных операций только для их предварительной обработки, а окончательную обработку с целью обеспечения заданной точности размеров и шероховатости поверхностей следует выполнять шлифованием. Для обеспечения высоких требований к точности расположения шеек оси их окончательную обработку необходимо осуществить за одну установку или, в крайнем случае, на одних и тех же базах.

Деталь представляет собой тело вращения и состоит из простых конструктивных элементов, представленных в виде тел вращения круглого сечения различного диаметра и длины. Длина оси составляет 370 мм, максимальный диаметр равен 50 мм, минимальный - 48, максимальный диаметр отверстия 14Н12 (+0,18), а минимальный - 10 мм.

По рис. видно, что деталь ось имеет следующие поверхности:

Поверхность 1 и 2 рис. 1: квадрат со стороной 40d11 мм и отклонениями верхнее -0,08, нижнее -0,24, шероховатостью Ra = 6,3 мкм.

Поверхность 3 и 5 рис. 1: диаметр 50d11 мм и отклонениями верхнее -0,08, нижнее -0,24; шероховатостью Ra = 6,3 мкм

Поверхность 4 рис. 1: диаметр 48 мм; шероховатостью Ra = 6,3 мкм.

Поверхность 6 рис. 1: отверстие диаметром 14Н12; верхнее отклонения +0.18, резьбу К3/8; шероховатость Ra = 3,2 мкм

Почти все поверхности оси относятся к основным, потому что сопрягаются с соответствующими поверхностями других деталей машин или же непосредственно участвуют в рабочем процессе машины. Это объясняет достаточно высокие требования к точности обработки детали и степени шероховатости, указанные на чертеже.

Можно отметить, что конструкция детали полностью отвечает ее служебному назначению. Но принцип технологичности конструкции состоит не только в удовлетворении эксплуатационных требований, но также и требований наиболее рационального и экономичного изготовления изделия.

Деталь имеет поверхности легкодоступные для обработки; достаточная жесткость детали позволяет обрабатывать ее на станках с наиболее производительными режимами резания. Данная деталь является технологичной, так как содержит простые профили поверхностей, ее обработка не требует специально разработанных приспособлений и станков. Поверхности оси обрабатываются на токарном, сверлильном, фрезерном и шлифовальном станках. Необходимая точность размеров и шероховатость поверхностей достигаются относительно небольшим набором несложных операций, а также набором стандартных резцов, фрез и кругов для шлифования.

2. Материал заготовки

Химический состав стали40Х ГОСТ4543 представлен в таблице 1.

Таблица 1

Заготовка детали «ось» выполнена из конструкционно легированной стали марки Сталь40Х ГОСТ4543.

Из таблицы 1 видно, что в химическом составе стали40Х ГОСТ4543 максимальный процент содержания Хрома (Cr) - 0.80 - 1.10, а минимальный Фосфора (P) - 0.035 и Серы (S) - 0.035.

Механические свойства стали40Х ГОСТ4543 представлены таблице 2.

Таблица 2

Физические свойства стали40Х ГОСТ4543 представлены в приложение 1.

Технологический маршрут обработки детали «ось»

Наименование

оборудования

Режимы резания

Время\мин

Заготовительная

Выбрать заготовку

круг ш 60 мм Сталь 40Х ГОСТ4543

Отрезать заготовку в размер 380 мм

Ленточно-пильный станок

Токарная

Подрезать торец

Точить (черновое) наружный ш 52 мм и наружный ш 49 мм на расстояние 140 мм

сверлить отв ш 14Н на глубину 205 мм

нарезать резьбу К 3/8?

Токарный станок 16К20

резец отрезной т5к10

Резец проходной Т15К6

Сверло ш 14 мм

Метчик К 3/8"" для конической резьбы Р6М5

Сверлить отв. ш 10

сверлильный вертикальный станок 2Н135

сверло ш 10 мм

Фрезерная

Фрезеровать квадрат с 2-х сторон в размер 60 мм со стороной 40d11 ((-0.08)/(-0.24))

Термо. обработка

Токарная (чистовая)

Точить до ш 50d11 в размер 55 мм и до ш 48 мм в размер 140 мм

Токарный станок 16К20

Слесарная

Притупить острые кромки

напильник

Контрольная

Проверить на соответствие заданным параметрам

Операция 005 отрезать заготовку в размер 380 мм. Оборудование ленточнопильный станок - это оборудования для резки металлического профиля разного сечения и диаметра методом пиления на заготовки разной длины. Перечень материалов подлежащих распиливанию с использованием ленточнопильных станков - это сталь и её сплавы. Метод базирования зажим в тески.

Операция 010 Токарная подрезать торец, точить (черновое) наружный ш 52 мм и наружный ш 48 мм на расстояние 140 мм сверлить отв ш 14Н12 (+0.18) на глубину 205 мм нарезать резьбу К 3/8?. Оборудование: токарный станок 16К20 представляет собой универсальный токарно-винторезный агрегат, на котором можно производить точения материалов в виде тел вращения, нарезание модульной, метрической, а также осуществлять широкий спектр токарных процедур (сверление с использованием разных видов сверл, зенкерование и так далее) с изделиями из горячекатаного и холоднокатаного проката. Базирования при точении в центрах, при сверлении отверстия ш 14Н12 (+0.18) и нарезания резьбы К 3/8? зажать в трехкулачковый патрон.

Резец токарный отрезной Т5К10, 32х20х170 мм, ГОСТ 18884-73

Пластина твердый сплав Т5К10

Резец проходной Т15К6 20х30х170 2102-0059

Резец токарный проходной прямой (правые и левые) с пластиной из твердого сплава Т15К6, ГОСТ 18878, применяется при обтачивании наружных поверхностей и фасок исполнение угол ц45°угол врезки 10°

Метчик К3/8 машинно-ручной для конической дюймовой резьбы ГОСТ 6227 область применения - нарезание внутренней конической дюймовой резьбы с углом профиля 60° машинным или ручным способом.

Операция 015 сверлильная, сверлить отв. ш 10. Оборудование вертикально-сверлильный станок 2Н135, с помощью которого могут одинаково успешно выполняться операции сверления, рассверливания и развертывания отверстий, а также подрезки торцов и зенкерования. Станки 2Н135 удобны в использовании и благодаря тому, что при помощи коробки подач и скоростей шпинделя можно подбирать оптимальные режимы получения и обработки отверстий с различными параметрами и в материалах с разными характеристиками.

Сверло - это режущий инструмент, с вращательным движением резания и осевым движением подачи, предназначенный для выполнения отверстий в сплошном слое материала.

Операция 020 Фрезерная, фрезеровать квадрат с 2-х сторон в размер 60 мм со стороной 40d11 ((-0.08)/(-0.24)). Оборудование станок горизонтально-фрезерный X6132 многофункциональный аппарат, предназначенный для различной обработки металлических деталей. Он способен обрабатывать плоские, ступенчатые поверхности, прорезать канавки и нарезать шестеренки при помощи цилиндрических, угловых, концевых, фасонных, сферических фрез. Усиленная конструкция станка позволяет загружать тяжелые заготовки весом до 500 кг. Хорошая производительность обусловлена высокой мощностью и широким диапазоном скоростей обработки. Применение современного режущего инструмента позволяет добиться более высоких результатов.

Концевая фреза, материал - быстрорежущая сталь Р18, число зубьев - 18. Производительность концевой фрезы невелика, и описанный метод фрезерования граней квадрата может быть рекомендован для мелкосерийного производства.

Операция 025 термообработка твердость по Роквеллу 34…42 HRCз

Операция 030 токарная (чистовая) точить до ш 50d11 в размер 55 мм

Оборудования токарный станок 16К20. Базирования в центрах.

Операция 035 слесарная притупить кромки. Оборудование напильник.

Операция 040 контрольная проверить на соответствие заданным параметрам.

Оборудование ШЦТ-1 - универсальный, губки у которого располагаются в одну сторону и изготавливаются из твердосплавных материалов; для проверки внутренней резьбы используется резьбовой калибр-пробка.

3. Определение типа производства

Характер технологического процесса в значительной мере зависит от типа производства деталей (единичное, серийное, массовое). Это обусловлено тем, что в различных типах производств экономически целесообразно использование различного по степени универсальности, механизации и автоматизации оборудования, приспособлений, различного по 2 сложности и универсальности режущего и измерительного инструмента. В зависимости от вида производства существенно изменяются и организационные структуры цеха: расстановка оборудования, системы обслуживания рабочих мест, номенклатура деталей. По таблице 4 устанавливаем предварительно тип производства в зависимости от веса и количества деталей, подлежащих изготовлению в течение года.

Таблица 4. Тип производства

Масса детали, кг.

Тип производства

Единичное

Мелкосерийное

Среднесерийное

Крупносерийное

Массовое

Серийное производство условно подразделяется на мелкосерийное, среднесерийное и крупносерийное, в зависимости от количества деталей в серии. Таким образом, имея годовой выпуск продукции 350 штук/год, наше производство является мелкосерийное.

Базирование заготовки

010 Операция токарная (черновая)

Оборудование

Станок токарно-винторезный модели 16К20: Таблица 5

Таблица 5

Приспособление

Центра вращающиеся по ГОСТу 8742-92.

Инструмент режущий

Резец токарный отрезной Т5К10, 32х20х170 мм, ГОСТ 18884-73 пластина твердый сплав Т5К10, резец проходной Т15К6 20х30х170 2102-0059, резец токарный проходной прямой (правые и левые) с пластиной из твердого сплава Т15К6, ГОСТ 18878.

Инструмент мерительный

Штангенциркуль ШЦ-I по ГОСТ 166-80, предел измерения 0-125 мм, цена деления 1 мм, точность измерения 0,1 мм.

4. Режимы резания

а) Первый переход. Точить деталь поверху начерно до Ш52 на длине l=370 мм; Rа=12,5 мкм.

1) Глубина резания для торцевой поверхности t = 5 мм.

2) Подача по справочнику sп = 0,45 мм/об.

3) Скорость резания v, м/мин.

где Сv=350 - Учитывает обрабатываемый материал и материал режущей части резца;

m = 0,2 xV=0,15 yV = 0,35 - показатели степеней;

Т = 60 - стойкость резца, мин;

Кv - скоростной коэффициент

где КПV =0,96 - состояние поставки заготовки;

КИV =0,65 - материал режущей части;

КМV =0,90 - обрабатываемый материала;

К=0,70 - коэффициент параметра резца;

Кг=0,97 - коэффициент параметра резца.

0,96·0,65·0,90·0,70·0,97=0,38

Все значения коэффициентов выбраны согласно рекомендации справочника.

4) Число оборотов шпинделя.

5) Частота вращения шпинделя по паспорту n=1000 об/мин.

7) Сила резания.

Рz=Срz·tхр·syp·vпр·кр,

где kр - коэффициент силовой

где k1=1,04 - обрабатываемый материал.

k2=0,89 - главный угол в плане

kp=1,04·0,89=0,93

Ср=3200 - обрабатываемый материал и материал режущей части

Рz=3000·4,51,0·0,650,75·56,54-0,15·0,93=5424 Н

8) Эффективная мощность резания.

где з = 0,75 - к.п.д. станка.

NЭФ = 6,75 кВт 15 кВт = NCT.

9) Основное время на переход:

где у1=0 - величина врезания инструмента:

l - основная длина обработки, l=180 мм;

б) Второй переход.

Точить деталь поверху до Ш49 мм на длине l=140 мм, Rа=12,5 мкм

Режим резания принимаем согласно первому перехода.

Основное время.

Штучное калькуляционное время:

где Тпз=120 - подготовительно-заключительное время на операцию;

Оперативное время.

tоп=Уtо+Уtв,

Уtо=tо1+tо2=0,82+0,31=1,13 мин

где Уtп=20 - вспомогательное время на операцию, мин;

tоп=1,13+20=21,13 мин

Тштк= +=28.6 мин

в) Третий переход.

Сверлить отв ш 14Н12 (+0.18) мм на длину l=205 мм, Rа=12 мкм

Операция сверлильная

Оборудование

Сверлильный вертикальный станок 2Н135 технические характеристики вынесены в приложении 2.

Инструмент режущий

1. Сверла с диаметрами: 10 мм ГОСТу 2692-92. Материал сверл быстрорежущая сталь. Стойкость сверл Т=45 мин. Геометрические параметры: 2f=116°; г=2°; щ=30°; б=2-5°.

Мерительный инструмент

1. Штангенциркуль ШЦ-I ГОСТ 166-80, пределы измерения 0-125 мм, цена деления 1 мм, точность измерения 0,1 мм.

Расчет режимов резания

а) Первый переход. Сверлить отверстие диаметром 10 мм на длине l = 24 мм, Rа=12,5 мкм.

1) Глубина резания t=0,5d=5 мм.

3) Подача по паспорту станка s=0,25 об/мин.

4) Скорость резания V=20 м/мин.

5) Обороты шпинделя.

6) Частота вращения шпинделя по паспорту n=630 об/мин.

7) Действительная скорость резания:

8) Крутящий момент.

Ткр=см·Dдм·sqм·кр, (2.12)

где см - обрабатываемый материал и материал сверла взятый за эталон, см=0,345;

qм - показатель степени;

ум - показатель степени;

kмр - материал обрабатываемый, kмр=1,06.

Ткр=0,345·10І·0,250,8·1,06=12,1 Н·м

9) Мощность резания.

? , (2.5)

где з = 0,75 - к.п.д. станка.

NЭ =0,78 кВт 3 кВт = NCT.

10) Основное время на переход:

где у1=3 - величина врезания инструмента:

l - основная длина обработки, l=24 мм;

y2 - величина перебега инструмента, y2=0 мм;

Штучное калькуляционное время

где Т пз =50 - подготовительно-заключительное время на операцию

020 Операция фрезерная

Оборудование

Станок горизонтально-фрезерный X6132

Технические характеристики

Размер стола (Д х Ш), мм 1320х320

Промежуток х Ширина х Количество Т-образных пазов, мм х мм х шт. 18х3

Макс. вес заготовки, кг 500

Продольное перемещение, мм 700

Поперечное перемещение, мм 255

Вертикальное перемещение, мм 320

Диапазон продольной подачи, мм/мин 23.5~1180/18

Диапазон поперечной подачи, мм/мин 23.5~1180/1

Приспособления

Гидравлические призмы, ножи.

Инструмент режущий

Концевая фреза из быстрорежущей стали

Число режущих зубьев - 4.

Размеры: диаметр рабочей части - 10 мм

диаметр хвостовика - 10 мм

рабочая длина - 22 мм

общая длина - 72 мм.

Мерительный инструмент

Линейка металлическая ГОСТ 427-80, пределы измерения 0-40 мм, цена деления 1 мм.

Режимы резания

а) Первый переход. Фрезеровать деталь с двух сторон. Выдержать размер l=310 60 мм, Rа=6,3 мкм.

1) Глубина резания для торцевой поверхности t = 2 мм.

2) Подача sп = 0,12 мм/об.

3) Скорость резания v, м/мин.

где Сv=330 - учитывает обрабатываемый материал и материал режущей части резца;

m = 0,2 xV=0,1 yV = 0,2

qv=0,2 - показатели степеней по справочнику

Т = 120 - стойкость резца, мин;

Кf=0,87 - главный угол в плане;

КN=0,90 - состояние поставки заготовки;

КM =0,77 - обрабатываемый материал;

Кu =0,65 - материал режущей части фрезы;

120,8 м/мин

4) Частота вращения шпинделя.

где D - диаметр фрезы, D=10 мм

5) Частота вращения шпинделя по паспорту n=504 об/мин.

6) Действительная скорость резания:

v===126,6 м/мин

7) Минутная подача:

sм=sz·n·Z=0,12·10·504=604,8 мм/мин (2.3)

8) Минутная подача по паспорту Sмин=560 мм/мин

9) Действительная подача на зуб:

sz== = 0,06 мм/зуб

10) Сила резания.

где kp=1,31 - обрабатываемый материал.

Ср=8250; Хр=1,0; Yр=0,75; u=1,1; qv=1,3; щр=0,2

11) Усилие подачи.

Рх=0,3·Рz=0,3·2235=670,5 Н;

Рх=670,5 Н < 2400 Н = [Рх]

12) Эффективная мощность резания.

где з = 0,75 - к.п.д. станка.

NЭФ = 6,2 кВт 15 кВт = NCT.

13) Основное время на переход:

где у1 - величина врезания инструмента:

l - основная длина обработки, l=80 мм;

y2 - величина перебега инструмента, y2=5 мм;

015 Токарная чистовая

Оборудование

Станок токарно-винторезный модели 16К20ТС.

Техническую характеристику смотри в операции 010.

Инструмент режущий

Резец токарный проходной прямой, чистовой по ГОСТу 6743-93 тип 5, согласно рекомендации , материал режущей части Т15К6. Стойкость резца Т=60 мин; ВЧН=16Ч25 - сечение державки; f1=8; б=8 - задний угол; г =0 - передний угол; л = 0 - угол наклона лезвия; r = 2 мм - радиус при вершине резца; f=0,2 мм.

Инструмент мерительный

Линейка металлическая по ГОСТу 427-80, пределы измерения 0-125 мм, цена деления 1 мм.

Штангенциркуль ШЦ-I по ГОСТ 166-80, предел измерения 0-125 мм, цена деления 1 мм, точность измерения 0,1 мм

Режимы резания

Штучное калькуляционное время

где Тпз=60 - подготовительно-заключительное время на операцию

Оперативное время.

tоп=Уtо+Уtв,

где Уtо - сумма основного времени, мин;

Уtо=tо1+tо2+tо3+tо4+tо5=1,13+1,8+0,9+0,71+0,1=4,64 мин

где Уt в =24 - вспомогательное время на операцию, мин;

5. Назначение и устройство станочного приспособления

деталь технический ось заготовка

Рассмотрим спроектированное в рамках данной курсовой работы станочное приспособление (рисунок 2). Станочное приспособление предназначено для крепления заготовок устанавливаемых по наружному и внутреннему диаметру.

Предварительную настройку кулачков 15 на заданный размер производят перестановкой их по рифленой поверхности 14. Благодаря плоскому соединению тяги 11 с муфтой 13 кулачки могут самоустанавливаться, в результате чего достигается равномерность зажима заготовки. Привод пневматический.

Патрон трехкулачковый

Расчет приспособления

Исходными данными для расчета приспособления является сила резания и крутящий момент.

Расчет выполняем для операции 010 - токарная.

Силу резания = 1060,85 Н.

Главная составляющая силы резания Pz образует момент резания.

А момент трения Мтр определим по формуле:

Составляем уравнение моментов относительно оси x:

Составляем уравнение сил относительно оси x:

Наладка токарного станка

Наладка она включает в себя установку по операционной карте наладки заданных значений частоты вращения шпинделя и скорости подачи при перемещениях подвижных узлов станка (суппортов, столов и т.п.). С этой целью настраивают коробки скоростей и подач. Производят расстановку (или, при необходимости, проверку правильности расположения) электрических, гидравлических и пневматических упоров и преобразователей управления работой узлов, установку зажимных патронов и выверку правильности расположения режущего инструмента (настройки на размер) согласно операционному чертежу.

В процессе наладки и эксплуатации металлорежущих станков периодически осуществляют проверку их геометрической точности (например, биение шпинделя) на соответствие нормам, указанным в паспорте оборудования.

В процессе текущей наладки станка (подналадки) выполняют только ряд переходов, указанных выше (начиная с четвертого, кроме седьмого и восьмого). Время пуска оборудования в начале каждой смены должно составлять не более 0,5 ч.

Наладка фрезерного станка

Наладка фрезерного станка, осуществляют его подготовку к работе, которая состоит из проверки исправности и готовности станка к выполнению различных операций фрезерования. На холостом ходу проверяют выполнение станком команд по пуску и остановке электродвигателя, включение и выключение вращения шпинделя, включение и выключение механических подач стола.

Убедившись в исправности станка, приступают к его наладке. Методы наладки станков фрезерной группы рассмотрим на примере универсальных консольно-фрезерных станков с ручным управлением.

Наладка сверлильного станка

Перед началом работы на сверлильном станке необходимо произвести его наладку.

Под наладкой станка подразумеваются подготовительные работы по установке и выверке режущего инструмента и приспособлений для крепления обрабатываемых деталей, осмотр и пробный запуск станка, а также подбор и установка требуемого числа оборотов шпинделя и величины подачи инструмента, указанных в технологической карте или назначенных по специальным таблицам. В массовом и серийном производстве наладку станков обычно производят высококвалифицированные рабочие-наладчики, в мелкосерийном и индивидуальном - сами сверловщики.

Однако независимо от того, кто выполнял наладку станка, до начала работы станочник обязан осмотреть станок и опробовать его на холостом ходу. При этом следует проверить состояние шпинделя, который должен вращаться без биения и, так же как и стол станка, плавно перемещаться вверх и вниз.

При обнаружении каких-либо неисправностей станка следует сообщить о них мастеру или наладчику.

Размещено на Allbest.ru

...

Подобные документы

    Назначение и конструкция шестерни. Выбор станочных приспособлений и режущего инструмента. Анализ технологичности конструкции детали. Экономическое обоснование выбора заготовки. Описание конструкции, принципа работы и расчет станочного приспособления.

    курсовая работа , добавлен 07.03.2012

    Назначение и конструкция детали "Рычаг КЗК-10-0115301". Анализ технологичности конструкции детали. Обоснование метода получения заготовки. Расчет припусков на обработку, режимов резания, усилия зажима. Расчет станочного приспособления на точность.

    курсовая работа , добавлен 17.06.2016

    Устройство, принцип работы приспособления для обработки детали "Звездочка". Назначение режимов резания, определение сил резания. Расчет усилия закрепления детали. Расчет пневматического привода. Оценка экономической эффективности приспособления.

    курсовая работа , добавлен 27.06.2015

    Краткое описание и назначение детали "Стакан", анализ ее конструктивных особенностей и используемого материала. Обоснование способа получения заготовки, этапы ее производства и обработки. Расчет и конструирование специального станочного приспособления.

    дипломная работа , добавлен 30.08.2009

    Определение типа производства. Технологический контроль чертежа и анализ технологичности конструкции детали. Выбор и обоснование метода изготовления заготовки. Проектирование станочного приспособления. Назначение режущего и измерительного инструмента.

    курсовая работа , добавлен 04.01.2014

    Анализ механических свойств стали 19ХГН, ее химический состав. Рассмотрение технологического эскиза детали "Корпус". Основные особенности выбора технологических баз. Этапы проектирования станочного приспособления и расчета операционных размеров.

    дипломная работа , добавлен 24.09.2012

    Выбор маршрута обработки детали до выполняемой операции, обоснование схемы базирования и закрепления. Описание конструкции и принципа действия разработанного приспособления. Расчет силового элемента и параметров конструкции приспособления на прочность.

    контрольная работа , добавлен 23.05.2013

    Анализ технических требований, предъявляемых к детали "Втулка", определение типа производства и метода получения заготовки. Расчет припусков на механическую обработку поверхностей и обоснование режимов резания. Проектирование станочного приспособления.

    дипломная работа , добавлен 08.11.2011

    Расчет типа производства. Маршрут обработки детали "вал-шестерня". Операционный эскиз на данную операцию. Схема станочного приспособления, устройство и принцип работы. Расчет сил резания. Паспортные данные станка на заданную операцию. Сборочный чертеж.

    курсовая работа , добавлен 26.02.2010

    Назначение и технологические требования к конструкции изготавливаемой детали - шпинделя металлорежущего станка. Выбор, экономическое обоснование метода получения заготовки, расчет режимов резания. Разработка конструкции специального режущего инструмента.

Ранее речь шла о передачах, как едином целом механизме, а также рассматривались элементы, непосредственно участвующие в передаче движения от одного звена механизма к другому. В данной теме будут представлены элементы, предназначенные для крепления частей механизма, непосредственно участвующих в передаче движения (шкивы, звёздочки, зубчатые и червячные колёса и т.п.). В конечном итоге, качество механизма, его КПД, работоспособность и долговечность в значительной мере зависят и от тех деталей, о которых будет идти речь в дальнейшем. Первыми из таких элементов механизма рассмотрим валы и оси.

Вал (рис. 17) – деталь машины или механизма предназначенная для передачи вращающего или крутящего момента вдоль своей осевой линии. Большинство валов – это вращающиеся (подвижные) детали механизмов, на них обычно закрепляются детали, непосредственно участвующие в передаче вращающего момента (зубчатые колёса, шкивы, звёздочки цепных передач и т.п.).

Ось (рис. 18) – деталь машины или механизма, предназначенная для поддержания вращающихся частей и не участвующая в передаче вращающего или крутящего момента. Ось может быть подвижной (вращающейся, рис. 18, а) или неподвижной (рис. 18, б).

Классификация валов и осей:

1. По форме продольной геометрической оси:

1.1.прямые (продольная геометрическая ось – прямая линия), например, валы редукторов, валы коробок передач гусеничных и колёсных машин;

1.2. коленчатые (продольная геометрическая ось разделена на несколько отрезков, параллельных между собой смещённых друг относительно друга в радиальном направлении), например, коленвал двигателя внутреннего сгорания;

1.3. гибкие (продольная геометрическая ось является линией переменной кривизны, которая может меняться в процессе работы механизма или при монтажно-демонтажных мероприятиях), часто используются в приводе спидометра автомобилей.

2. По функциональному назначению:

2.1. валы передач , они несут на себе элементы, передающие вращающий момент (зубчатые или червячные колёса, шкивы, звёздочки, муфты и т.п.) и в большинстве своём снабжены концевыми частями, выступающими за габариты корпуса механизма;

2.2. трансмиссионные валы предназначены, как правило, для распределения мощности одного источника к нескольким потребителям;

2.3. коренные валы - валы, несущие на себе рабочие органы исполнительных механизмов (коренные валы станков, несущие на себе обрабатываемую деталь или инструмент называют шпинделями ).

3. Прямые валы по форме исполнения и наружной поверхности:

3.1. гладкие валы имеют одинаковый диаметр по всей длине;

3.2. ступенчатые валы отличаются наличием участков отличающихся друг от друга диаметрами;

3.3. полые валы снабжены сквозным или глухим отверстием, соосным наружной поверхности вала и простирающимся на большую часть длины вала;

3.4. шлицевые валы по внешней цилиндрической поверхности имеют продольные выступы – шлицы, равномерно расположенные по окружности и предназначенные для передачи моментной нагрузки от или к деталям, непосредственно участвующим в передаче вращающего момента;

3.5. валы, совмещённые с элементами, непосредственно участвующими в передаче вращающего момента (вал-шестерня, вал-червяк).

Конструктивные элементы валов представлены на рис. 19.

Опорные части валов и осей, через которые действующие на них нагрузки передаются корпусным деталям, называются цапфами . Цапфу, расположенную в средней части вала, обычно называют шейкой . Концевую цапфу вала, передающую корпусным деталям только радиальную нагрузку или радиальную и осевую одновременно, называют шипом , а концевую цапфу, передающую только осевую нагрузку, называют пятой . С цапфами вала взаимодействуют элементы корпусных деталей, обеспечивающие возможность вращения вала, удерживающие его в необходимом для нормальной работы положении и воспринимающие нагрузку со стороны вала. Соответственно элементы, воспринимающие радиальную нагрузку (а часто вместе с радиальной и осевую) называют подшипниками , а элементы, предназначенные для восприятия только осевой нагрузки – подпятниками .

Кольцевое утолщение вала малой протяжённости, составляющее с ним одно целое и предназначенное для ограничения осевого перемещения самого вала или насаженных на него деталей, называют буртиком .

Переходная поверхность от меньшего диаметра вала к большему, служащая для опирания насаженных на вал деталей, называется заплечиком .

Переходная поверхность от цилиндрической части вала к заплечику, выполненная без удаления материала с цилиндрической и торцевой поверхности (рис. 20. б, в), называется галтелью . Галтель предназначается для снижения концентрации напряжений в переходной зоне, что в свою очередь ведёт к увеличению усталостной прочности вала. Чаще всего галтель выполняют в форме радиусной поверхности (рис. 20. б), однако в отдельных случаях галтель может быть выполнена в форме поверхности переменной двойной кривизны (рис. 20. в). Последняя форма галтели обеспечивает максимальное уменьшение концентрации напряжений, однако требует выполнения специальной фаски в отверстии насаживаемой детали.

Углубление малой протяжённости на цилиндрической поверхности вала, выполненное по радиусу к оси вала, называют канавкой (рис. 20, а, г, е). Канавка, также как и галтель, очень часто используется для оформления перехода от цилиндрической поверхности вала к торцевой поверхности его заплечика. Наличие канавки в этом случае обеспечивает благоприятные условия для формирования цилиндрических посадочных поверхностей, так как канавка является пространством для выхода инструмента, формирующего цилиндрическую поверхность при механической обработке (резец, шлифовальный круг). Однако канавка не исключает возможности образования ступеньки на торцевой поверхности заплечика.

Углубление малой протяжённости на торцевой поверхности заплечика вала, выполненное вдоль оси вала, называют поднутрением (рис. 20, д). Поднутрение обеспечивает благоприятные условия для формирования торцевой опорной поверхности заплечика, так как является пространством для выхода инструмента, формирующего эту поверхность при механической обработке (резец, шлифовальный круг), но не исключает возможности образования ступеньки на цилиндрической поверхности вала при её окончательной обработке.

Обе указанные проблемы решает введение в конструкцию вала наклонной канавки (рис. 20, е), которая совмещает достоинства, как цилиндрической канавки, так и поднутрения.

Рис. 21. Разновидности конфигурации цапф

Цапфы валов могут иметь форму различных тел вращения (рис. 21): цилиндрическую , коническую или сферическую . Шейки и шипы чаще всего выполняют в форме цилиндра (рис. 21, а, б). Цапфы такой формы достаточно технологичны при изготовлении и ремонте и широко применяются как с подшипниками скольжения, так и с подшипниками качения. В форме конуса выполняют концевые цапфы (шипы, рис. 21, в) валов, работающие, как правило, с подшипниками скольжения, с целью обеспечения возможности регулировки зазора и фиксации осевого положения вала. Конические шипы обеспечивают более точную фиксацию валов в радиальном направлении, что позволяет уменьшить биения вала при высоких частотах вращения. Недостатком конических шипов является склонность к заклиниванию при температурном расширении (увеличении длины) вала.

Сферические цапфы (рис. 21, г) хорошо компенсируют несоосности подшипников, а также снижают влияние изгиба валов под действием рабочих нагрузок на работу подшипников. Основным недостатком сферических цапф является повышенная сложность конструкции подшипников, что увеличивает стоимость изготовления и ремонта вала и его подшипника.

Пяты (рис. 22) по форме и числу поверхностей трения можно разделить на сплошные , кольцевые , гребенчатые и сегментные .

Сплошная пята (рис. 22, а) наиболее проста в изготовлении, но характеризуется значительной неравномерностью распределения давления по опорной площади пяты, затруднительным выносом продуктов износа смазочными жидкостями и существенно неравномерным износом.

Кольцевая пята (рис. 22, б) с этой точки зрения более благоприятна, хотя и несколько сложнее в изготовлении. При подаче смазки в приосевую область её поток движется по поверхности трения в радиальном направлении, то есть перпендикулярно направлению скольжения, и таким образом отжимает трущиеся поверхности одна от другой, создавая благоприятные условия для относительного проскальзывания поверхностей.

Рис. 22. Некоторые формы пят.

Сегментная пята может быть получена из кольцевой посредством нанесения на рабочую поверхность последней нескольких неглубоких радиальных канавок, симметрично расположенных по кругу. Условия трения в такой пяте ещё более благоприятные по сравнению с вышеописанными. Наличие радиальных канавок способствует образованию жидкостного клина между трущимися поверхностями, что ведёт к их разделению при пониженных скоростях скольжения.

Гребенчатая пята (рис. 22, в) имеет несколько опорных поясков и предназначена для восприятия осевых нагрузок значительной величины, но в этой конструкции достаточно трудно обеспечить равномерность распределения нагрузки между гребнями (требуется высокая точность изготовления, как самой пяты, так и подпятника). Сборка узлов с такими подпятниками тоже достаточно сложна.

Выходные концы валов (рис. 923) обычно имеют цилиндрическую или коническую форму и снабжаются шпоночными пазами или шлицами для передачи вращающего момента.

Цилиндрические концы валов проще в изготовлении и особенно предпочтительны для нарезания шлицов. Конические концы лучше центрируют насаженные на них детали и в связи с этим более предпочтительны для высокоскоростных валов.

Вращающиеся детали машин устанавливают на валах или осях, обеспечивающих постоянное положение оси вращения этих деталей.

Валы - детали, предназначенные для передачи крутящего момента вдоль своей оси и для поддержания вращающихся деталей машин.

Валы по назначению можно разделить на валы передач , несущие детали передач – зубчатые колеса, шкивы, звездочки, муфты (рис. ,а и б), и на коренные валы машин и другие специальные валы, несущие кроме деталей передач рабочие органы машин двигателей или орудий – колеса или диски турбин, кривошипы, зажимные патроны и т. д. (рис. ,в и д )

По форме геометрической оси валы разделяют на прямые и коленчатые.

Оси – детали, предназначенные для поддержания вращающихся деталей и не передающие полезного крутящего момента.

Рис. 12.1 Основные типы валов и осей:

а – гладкий трансмиссионный вал; б – ступенчатый вал;

в – шпиндель станка; г - вал паровой турбины; д – коленчатый вал;

е – ось вращающегося вагонная; ж – ось невращающаяся вагонетки.

Опорные части валов и осей называют цапфами . Промежуточные цапфы называют шейками , концевые – шипами .

Прямые валы по форме разделяют на валы постоянного диаметра (валы трансмиссионные и судовые многопролетные, рис. ,а, а также валы, передающие только крутящий момент); валы ступенчатые (большинство валов, рис. б-г ); валы с фланцами для соединения по длине, а также валы с нарезанными шестернями или червяками. По форме сечения валы разделяются на гладкие, шлицевые, имеющие на некоторой длине профиль зубчатого (шлицевого) соединения, и профильные.

Форма вала по длине определяется распределением нагрузок по длине.

Эпюры моментов по длине валов, как правило, существенно неравномерны. Крутящий момент обычно передается не на всей длине вала. Эпюры изгибающих моментов обычно сходят к нулю к концевым опорам или к концам валов. Поэтому по условию прочности допустимо и целесообразно конструировать валы переменного сечения приближающимися к телам равного сопротивления. Практически валы выполняю ступенчатыми. Эта форма удобна в изготовлении и сборке; уступы валов могут воспринимать большие осевые силы.

Перепад диаметров ступеней определяется: стандартными диаметрами посадочных поверхностей под ступицы и подшипники, достаточной опорной поверхностью для восприятия осевых сил при заданных радиусах закругления кромок и размерах фасок и, наконец, условиями сборок.

Цапфы (шейки) валов, работающие в подшипниках скольжения, выполняют: а) цилиндрическими; б) коническими; в) сферическими (рис.). Основное применение имеют цилиндрические цапфы. Концевые цапфы для облегчения сборки и фиксации вала в осевом направлении обычно делают несколько меньшего диаметра, чем соседний участок вала (рис.).

Цапфы валов для подшипников качения (рис.) характеризуются меньшей длиной, чем цапфы для подшипников скольжения.

Цапфы для подшипников качения нередко выполняют с резьбой или другими средствами для закрепления колец.

Посадочные поверхности под ступицы деталей, насаживаемых на вал, выполняют цилиндрическими или коническими. Основное применение имеют цилиндрические поверхности как более простые в изготовлении.

Рис. 12.4 Конструктивные средства повышения выносливости

валов в местах посадок: а – утолщение подступичной чвсти вала;

б – закругление кромок ступицы; в – утонение ступицы; г – разгрузочные

канавки; д – втулки или заливки в ступице из материала с низким модулем

упругости.

Выносливость валов определяется относительно малыми объемами металла в зонах значительной концентрации напряжений. Поэтому особо эффективны специальные конструкторские и технологические мероприятия по повышению выносливости валов.

Конструктивные средства повышения выносливости валов в местах посадок путем уменьшения кромочных давлений показаны на рис. .

Упрочнением подступичных частей поверхностным наклепом (обкаткой роликами или шариками) можно повысить предел выносливости валов на 80 – 100%, причем этот эффект распростра- няется на валы диаметром до 500 – 600 мм.

Прочность валов в местах шпоночных, зубчатых (шлицевых) и других разъемных соединений со ступицей может быть повышена: применением эвольвентных шлицевых соединений; шлицевых соединений с внутренним диаметром, равным диаметру вала на соседних участках, или с плавным выходом шлицев на поверхность, обеспечивающим минимум концентрации напряжений; шпоночных канавок, изготовляемых дисковой фрезой и имеющих плавный выход на поверхность; бесшпоночных соединений.

Осевые нагрузки и на валы от насаженных на них деталей передаются следующими способами. (рис.)

1) тяжелые нагрузки – упором деталей в уступы на валу, посадкой деталей или установочных колец с натягом (рис. ,а и б)

2) средние нагрузки – гайками, штифтами непосредственно или через установочные кольца, клеммовыми соединениями (рис. ,в – д);

3) легкие нагрузки и предохранение от перемещений случайными силами – стопорными винтами непосредственно или через установочные кольца, клеммовыми соединениями, пружинными кольцами (рис. ,д – ж).

ВАЛЫ и ОСИ НАЗНАЧЕНИЕ Валы и оси предназначены для направления и поддерживания в пространстве вращающихся деталей (зубчатые колеса, шкивы, блоки, звездочки и др.). Они различаются между собой по условиям работы. ОСЬ не передает вращающего момента и работает только на изгиб. Она может быть вращающейся или неподвижной. ВАЛ всегда вращается и всегда передает вращающий момент, работает в основном на изгиб и кручение. Некоторые валы не поддерживают вращающиеся детали и работают только на кручение. Например карданные валы автомобилей, гибкие валы в приводах механизированного инструмента и т. д.

ОСИ Конструкция узла с вращающейся осью: Конструкция узла с неподвижной осью: 1 – ходовое колесо; 2 – шпонка; 3 – ось; 4 – конические роликоподшипники 1 – канатный блок; 2 – ось; 3 – стопорные планки; 4 – обойма блока

КОНСТРУКЦИИ ХОДОВЫХ КОЛЕС КРАНОВ б а а – на неподвижной оси: 1 – колесо; 2 – ось; 3 – зубчатая передача б – на вращающейся оси

ВАЛЫ Механизм передвижения крана с тихоходным трансмиссионным валом: 1 – электродвигатель; 2 – муфта; 3 – редуктор; 4 – трансмиссионный вал; 5 – тормоз. Карданный вал Вал редуктора

КЛАССИФИКАЦИЯ ВАЛОВ По форме поперечных сечений валов а – цилиндрическое сплошное б – цилиндрическое полое в – со шпоночной канавкой г – с шлицевыми канавками д – профильное

По назначению Ø Валы передач – несущие зубчатые колеса, шкивы, звездочки и другие детали. Ø Коренные валы – кроме деталей передач несут еще рабочие органы машин или орудий (диски турбин, зажимные патроны токарных и расточных станков др.) По форме геометрической оси Ø Прямые Ø Коленчатые – используются не только для передач вращающегося момента, но и для преобразования возвратнопоступательного движения во вращательное Ø Гибкие, с изменяемой формой геометрической оси. Применяются в приводах, приборах, зубоврачебных бурмашинах и др.

ОПОРНЫЕ УЧАСТКИ ВАЛОВ Вал 1 имеет большое число опор называемых подшипниками 2. Часть вала, охватываемую опорой, называют цапфой. Концевые цапфы называют шипами 3, а промежуточные шейками 4.

ТРЕБОВАНИЯ К МАТЕРИАЛАМ ДЛЯ ИЗГОТОВЛЕНИЯ ВАЛОВ ü Высокие прочностные характеристики. ü Малая чувствительность к концентрации напряжений ü Способность подвергаться термической и химико-термической обработке ü Хорошая обрабатываемость

МАТЕРИАЛЫ И ТЕРМООБРАБОТКА ВАЛОВ Назначение вала Марка стали Вид термообработки Малонагруженные валы и оси, диаметры которых в основном определяются жесткостью Углеродистые стали: Ст. 3, Ст. 4, Ст. 5 Без термообработки Валы и оси с повышенными требованиями к несущей способности шлицев и цапф Среднеуглеродистые и легированные стали: 35, 40, 45, 40 Х, 40 Н и др. Улучшение до твердости Н=250… 320 НВ Валы и оси при требовании высокой износостойкости: - опоры скольжения; - вал-шестерни Малоуглеродистые конструкционные стали: - качественные 15, 20; - легированные 15 Х, 20 Х, 18 ХГТ, 12 ХНЗА и др. Цементация и закалка до твердости Н=58… 63 НRc Тяжелонагруженные валы Легированные стали: 40 ХНМА, 18 ХГТ, 38 Х 2 МЮА и др.

ВИДЫ ПОВРЕЖДЕНИЙ ВАЛОВ Поломки валов в зоне концентраций напряжений. Возникают из-за понижения усталостной прочности вследствие действия переменных напряжений. Причины – неправильный выбор конструктивной формы деталей (галтель), нарушение технологии изготовления (надрезы, следы обработки и т. д.), нарушение норм технической эксплуатации (неправильная регулировка подшипников, уменьшение необходимых зазоров). Чаще всего поломки происходят в зоне расположения концентраторов напряжений (шпоночные пазы, галтели, отверстия, напрессовки и др.). Смятие рабочих поверхностей (пазов, шпонок, шлицев, износ шлицев в подвижных соединениях и другие виды поверхностных повреждений). Фрикционная коррозия и концентрация давления на участках, расположенных около торцов ступицы (возникают предпосылки к возникновению очагов усталостного разрушения. Недостаточная жесткость валов и осей на изгиб и кручение. Разрушения в следствие поперечных или крутильных колебаний.

КРИТЕРИИ РАБОТОСПОСОБНОСТИ ВАЛОВ Прочность Жесткость Виброустойчивость Износостойкость Основным критерием работоспособности тихоходных валов является статическая прочность

ТОЧКИ ОПОРЫ ВАЛА а – на радиальном подшипнике; б – на радиально-упорном подшипнике; в – на двух подшипниках в одной опоре; г – на подшипнике скольжения

СХЕМЫ НАГРУЖЕНИЯ ВАЛА. ЭПЮРЫ ИЗГИБАЮЩИХ И ВРАЩАЮЩЕГО МОМЕНТОВ По ГОСТ 16162 -85 для входных и выходных валов одноступенчатых цилиндрических и конических редукторов и для быстроходных валов редукторов любого типа Для тихоходных валов двух- и трехступенчатых редукторов, а также червячных передач где Т – вращающий момент на валу.

ПОРЯДОК РАСЧЕТА ВАЛОВ НА СТАТИЧЕСКУЮ ПРОЧНОСТЬ Составляют расчетную схему Определяют реакции опор в горизонтальной и вертикальной плоскостях Строят эпюры изгибающих моментов и эпюры крутящего момента Геометрически суммируют моменты Для опасных сечений (где наибольшие суммарные моменты) рассчитывают диаметры и окончательно разрабатывают конструкцию вала. Так как валы работают в условиях изгиба и кручения, а напряжения от осевых сил малы, то эквивалентное напряжение в точке наружного волокна согласно энергетической теории прочности определяют по формуле где; - расчетные напряжения на изгиб и кручение - осевой и полярный моменты сечения вала

РАСЧЕТ ВАЛОВ НА УСТАЛОСТНУЮ ПРОЧНОСТЬ Выполняют как проверочный в форме определения коэффициентов запасов прочности где S , S - коэффициенты запаса прочности соответственно по напряжениям изгиба и кручения; [s] = 2… 2, 5 - допустимый коэффициент запаса прочности. где σ-1 , -1 - пределы выносливости материала при изгибе и кручении; К D , K D - коэффициенты концентрации напряжений, учитывающие влияние всех факторов на сопротивление усталости; σа, а - амплитуды напряжений; , - коэффициенты, характеризирующие чувствительность материала к ассиметрии цикла напряжений; σm , m - постоянные составляющие цикла изменения напряжений.

ХАРАКТЕР ИЗМЕНЕНИЯ НАПРЯЖЕНИЙ В ВАЛАХ Симметричный цикл напряжений Отнулевой цикл напряжений Постоянные по величине и направлению нагрузки вызывают во вращающихся валах переменные напряжения изгиба, меняющиеся по симметричному циклу с амплитудой σа и средним напряжением σm Изменение напряжений кручения в расчетах принимают по отнулевому циклу

Описание работы

Технология изготовления,применение деталей данного типа в механике,в авиации,в промышленности

Введение 2
1.Общий раздел 4
1.1. Описание конструкции и служебного назначения детали. 4
1.2. Технологический контроль чертежа детали и анализ детали на технологичность. 4
2.Технологический раздел. 7
2.1.Характеристика среднесерийного типа производства. 7
2.2.Выбор вида и метода получения заготовки; экономическое обоснование выбора заготовки. 9
2.3.Разработка маршрута механической обработки детали с выбором оборудования и станочных приспособлений. Выбор и обоснование баз. 13
2.4.Расчет межоперационных размеров на две наиболее точные поверхности аналитическим методом, на остальные табличным. 15
2.5.Разбивка технологического процесса на составляющие операции. Выбор режущего, вспомогательного и измерительного инструмента. 22
2.6. Расчет режимов резания и нормирование операций 23
2.7.Расчет норм времени 25
3. Конструкторский раздел 27
3.1. Конструирование и расчет режущего инструмента 27
СПИСОК ЛИТЕРАТУРЫ 30

Работа содержит 1 файл

К.Т2.151901.4Д.05.000ПЗ


Рост промышленности и народного хозяйства, а также темпы перевооружения их новой техникой в значительной мере зависят от уровня развития машиностроения. Технический прогресс в машиностроении характеризуется совершенствованием технологии изготовления машин, уровнем их конструктивных решений и надежности их в последующей эксплуатации.

В настоящее время важно - качественно, дешево, в заданные сроки с минимальными затратами живого и овеществленного труда изготовить машину, применив современную высокопроизводительную технику, оборудование, инструмент, технологическую оснастку, средства механизации и автоматизации производства.

Разработка технологического процесса изготовления машины не должна сводится к формальному установлению последовательности обработки поверхностей деталей, выбору оборудования и режимов. Она требует творческого подхода для обеспечения согласованности всех этапов построения машины и достижения требуемого качества с наименьшими затратами.

При проектировании технологических процессов изготовления деталей машин необходимо учитывать основные направления в современной технологии машиностроения:

Приближение заготовок по форме, размерам и качеству поверхностей к готовым деталям, что дает возможность сократить расход материала, значительно снизить трудоемкость обработки деталей на металлорежущих станках, а также уменьшить затраты на режущие инструменты, электроэнергию и прочее.

Повышение производительности труда путем применения: автоматических линий, автоматов, агрегатных станков, станков с ЧПУ, более совершенных методов обработки, новых марок материалов режущих инструментов.

Концентрация нескольких различных операций на одном станке для одновременной или последовательной обработки большим количеством инструментов с высокими режимами резания.

Применение электрохимических и электрофизических способов размерной обработки деталей.

Развитие упрочняющей технологии, повышение прочностных и эксплуатационных свойств деталей путем упрочнения поверхностного слоя механическим, термическим, термомеханическим, химикотермическим способами.

Применение прогрессивных высокопроизводительных методов обработки, обеспечивающих высокую точность и качество поверхностей деталей машины, методов упрочнения рабочих поверхностей, повышающих ресурс работы детали и машины в целом, эффективное использование автоматических и поточных линий, станков с ЧПУ - все это направлено на решение главных задач: повышение эффективности производства и качества продукции.

1.Общий раздел

1.1. Описание конструкции и служебного назначения детали.

Данная деталь «Ось», массой 3.7кг изготовлена из стали 45 ГОСТ 1050-88.

Деталь относится к классу «вал» и имеет форму вращения. Деталь состоит из 6 ступеней:

На первой ступени нарезана резьба М20-69, с шероховатостью Ra6.3, на длине 21 мм.

Вторая цилиндрическая Ø20 h8мм, шероховатость поверхности Ra3.2, длиной 18 мм; Допуск h8 предназначен для жесткой посадки стыкуемой детали.

Третья ступень выполнена без механической обработки, Ø25мм, длиной 5 мм.

Четвертая цилиндрическая ступень Ø20мм, длиной 80мм, на которой выполнены пазы для сопрягаемой детали и исключающие поворот сопрягаемой детали.

Пятая ступень выполнена Ø15f7 мм, длиной 25 мм, этот допуск говорит о том, что сопрягаемая деталь одевается на ось жестко.

На шестой ступени выполнена резьба М12-83 и отверстие Ø3.2мм.

Деталь «Ось» предназначена для передачи крутящего момента.

1.2. Технологический контроль чертежа детали и анализ детали на технологичность

Химический состав и механические свойства материала детали

Сталь 45 ГОСТ 1050-88. Сталь углеродистая конструкционная качественная.

Химический состав детали

С Si Mn Ni S P Cr Cu As Fe
0,42÷0,5 0,17÷0,37 0,5÷0,8 до 0,25 до 0,04 до 0,035 до 0,25 до 0,25 до 0,08 ост.

Механические свойства

Деталь достаточно технологична. В упрощении конструкции деталь не нуждается. Базой детали является ось и торцы. Искусственные базы не требуются.

Токарную обработку будем производить в центрах, и в специальных приспособлениях. Фрезерование производим с помощью фрезы круглого сечения, а сверление на сверлильном станке с ЧПУ и с применением специального приспособления. Нарезание резьбы будем производить на токарном станке с ЧПУ.

Для измерения заданных на чертеже размеров следует использовать следующие мерительные инструменты: скобы, пробки, штангенциркули, шаблоны, индикаторы, резьбовые пробки.

Качественный анализ технологичности конструкции детали.

Деталь должна изготавливаться с минимальными трудовыми и материальными затратами. Эти затраты можно сократить в значительной степени в результате правильного выбора варианта технологического процесса, его оснащения, механизации и автоматизации, применения оптимальных режимов обработки и правильной подготовки производства. На трудоемкость изготовления детали оказывают особое влияние ее конструкция и технические требования на изготовление.

Данная деталь по качественной оценке является технологичной:

Конструкция детали состоит из стандартных и унифицированных конструктивных элементов; большинство обрабатываемых поверхностей детали имеют правильную простановку размеров, оптимальные степень точности и шероховатость;

Конструкция детали позволяет изготавливать ее из заготовки, полученной рациональным способом;

Конструкция обеспечивает возможность применения типовых и стандартных технологических процессов при изготовлении.

Все вышеизложенное, позволяет сделать вывод, что представленная деталь является технологичной.

Коэффициент точности обработки определяется по формуле

(1)

где

где цифры обозначают квалитеты точности размеров.

n 1 ; n 2 и т.д. – количество размеров данного квалитета точности.

Коэффициент шероховатости обработки определяется по формуле

(3)

где

где цифры обозначают классы шероховатости поверхности.

При К ТО ≤0,80 деталь считается трудоемкой в производстве.

n 1 ; n 2 и т.д. – количество поверхностей данного класса шероховатости.

При К ШО ≤0,16 деталь считается трудоемкой в производстве.

Вывод : Кт = 0,99 Кш = 0,91

0,99› 0,8 0,91› 0,16

Все выше изложенное позволяет сделать вывод, что представленная деталь является технологичной.

2.Технологический раздел

2.1.Характеристика среднесерийного типа производства

Характеристика вида производства.

Серийный тип производства характеризуется ограниченной номенклатурой выпуска, детали изготавливаются периодически повторяющимися партиями. Трудоёмкость и себестоимость ниже, чем в единичном производстве. Различают мелкосерийное, среднесерийное и крупносерийное типы производства. Крупносерийный тип производства характеризуется применением специализированного оборудования расположенного на участке по ходу технологического процесса. Применяется специализированный режущий и мерительный инструмент. Квалификация рабочих низкая. Применяется принцип не полной взаимозаменяемости.

Таблица 3.

Ориентировочное определение типа производства

Тип

производства

Годовой объем выпуска
Тяжелых Средних Легких
> 30 кг 8 - 30 кг < 8 кг
Единичное < 5 < 10 < 100
Мелкосерийное 5 – 100 10 – 200 100 - 500
Среднесерийное 100 – 300 200 – 500 500 - 5000
Крупносерийное 300 – 1000 500 – 5000 5000 - 50000
Массовое > 1000 > 5000 > 50000

Ориентировочно по таблице определяем тип производства - среднесерийное.

Более точно можно определить тип производства по коэффициенту закрепления операций К з.о. .

при К з.о. = 1 - производство массовое,

1 £ К з.о. £ 10 – крупносерийное,

10 £ К з.о. £ 20 - среднесерийное,

20 £ К з.о. £ 40 - мелкосерийное,

40 > К з.о. – единичное производство.

Значение К з.о. на стадии разработки процесса вычисляют по формуле:

      Где: S О – количество операций, выполняемых на участке в течение месяца,

Поделиться: