Выходные транзисторы усилителя звука. Что такое выходной транзистор? Ток покоя и каскадные усилители

Простейший усилитель на транзисторах может быть хорошим пособием для изучения свойств приборов. Схемы и конструкции достаточно простые, можно самостоятельно изготовить устройство и проверить его работу, произвести замеры всех параметров. Благодаря современным полевым транзисторам можно изготовить буквально из трех элементов миниатюрный микрофонный усилитель. И подключить его к персональному компьютеру для улучшения параметров звукозаписи. Да и собеседники при разговорах будут намного лучше и четче слышать вашу речь.

Частотные характеристики

Усилители низкой (звуковой) частоты имеются практически во всех бытовых приборах - музыкальных центрах, телевизорах, радиоприемниках, магнитолах и даже в персональных компьютерах. Но существуют еще усилители ВЧ на транзисторах, лампах и микросхемах. Отличие их в том, что УНЧ позволяет усилить сигнал только звуковой частоты, которая воспринимается человеческим ухом. Усилители звука на транзисторах позволяют воспроизводить сигналы с частотами в диапазоне от 20 Гц до 20000 Гц.

Следовательно, даже простейшее устройство способно усилить сигнал в этом диапазоне. Причем делает оно это максимально равномерно. Коэффициент усиления зависит прямо от частоты входного сигнала. График зависимости этих величин - практически прямая линия. Если же на вход усилителя подать сигнал с частотой вне диапазона, качество работы и эффективность устройства быстро уменьшатся. Каскады УНЧ собираются, как правило, на транзисторах, работающих в низко- и среднечастотном диапазонах.

Классы работы звуковых усилителей

Все усилительные устройства разделяются на несколько классов, в зависимости от того, какая степень протекания в течение периода работы тока через каскад:

  1. Класс «А» - ток протекает безостановочно в течение всего периода работы усилительного каскада.
  2. В классе работы «В» протекает ток в течение половины периода.
  3. Класс «АВ» говорит о том, что ток протекает через усилительный каскад в течение времени, равного 50-100 % от периода.
  4. В режиме «С» электрический ток протекает менее чем половину периода времени работы.
  5. Режим «D» УНЧ применяется в радиолюбительской практике совсем недавно - чуть больше 50 лет. В большинстве случаев эти устройства реализуются на основе цифровых элементов и имеют очень высокий КПД - свыше 90 %.

Наличие искажений в различных классах НЧ-усилителей

Рабочая область транзисторного усилителя класса «А» характеризуется достаточно небольшими нелинейными искажениями. Если входящий сигнал выбрасывает импульсы с более высоким напряжением, это приводит к тому, что транзисторы насыщаются. В выходном сигнале возле каждой гармоники начинают появляться более высокие (до 10 или 11). Из-за этого появляется металлический звук, характерный только для транзисторных усилителей.

При нестабильном питании выходной сигнал будет по амплитуде моделироваться возле частоты сети. Звук станет в левой части частотной характеристики более жестким. Но чем лучше стабилизация питания усилителя, тем сложнее становится конструкция всего устройства. УНЧ, работающие в классе «А», имеют относительно небольшой КПД - менее 20 %. Причина заключается в том, что транзистор постоянно открыт и ток через него протекает постоянно.

Для повышения (правда, незначительного) КПД можно воспользоваться двухтактными схемами. Один недостаток - полуволны у выходного сигнала становятся несимметричными. Если же перевести из класса «А» в «АВ», увеличатся нелинейные искажения в 3-4 раза. Но коэффициент полезного действия всей схемы устройства все же увеличится. УНЧ классов «АВ» и «В» характеризует нарастание искажений при уменьшении уровня сигнала на входе. Но даже если прибавить громкость, это не поможет полностью избавиться от недостатков.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений - не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше - до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется - характерный металлический звук.

«Альтернативные» конструкции

Нельзя сказать, что они альтернативные, просто некоторые специалисты, занимающиеся проектировкой и сборкой усилителей для качественного воспроизведения звука, все чаще отдают предпочтение ламповым конструкциям. У ламповых усилителей такие преимущества:

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, - обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление - несколько тысяч Ом. Но сопротивление обмотки динамиков - 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток - существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная - в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий - порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности - они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество. Поэтому нужно обращать внимание в первую очередь на них, а не на мощность.

Схема однотактного УНЧ на транзисторе

Самый простой усилитель, построенный по схеме с общим эмиттером, работает в классе «А». В схеме используется полупроводниковый элемент со структурой n-p-n. В коллекторной цепи установлено сопротивление R3, ограничивающее протекающий ток. Коллекторная цепь соединяется с положительным проводом питания, а эмиттерная - с отрицательным. В случае использования полупроводниковых транзисторов со структурой p-n-p схема будет точно такой же, вот только потребуется поменять полярность.

С помощью разделительного конденсатора С1 удается отделить переменный входной сигнал от источника постоянного тока. При этом конденсатор не является преградой для протекания переменного тока по пути база-эмиттер. Внутреннее сопротивление перехода эмиттер-база вместе с резисторами R1 и R2 представляют собой простейший делитель напряжения питания. Обычно резистор R2 имеет сопротивление 1-1,5 кОм - наиболее типичные значения для таких схем. При этом напряжение питания делится ровно пополам. И если запитать схему напряжением 20 Вольт, то можно увидеть, что значение коэффициента усиления по току h21 составит 150. Нужно отметить, что усилители КВ на транзисторах выполняются по аналогичным схемам, только работают немного иначе.

При этом напряжение эмиттера равно 9 В и падение на участке цепи «Э-Б» 0,7 В (что характерно для транзисторов на кристаллах кремния). Если рассмотреть усилитель на германиевых транзисторах, то в этом случае падение напряжения на участке «Э-Б» будет равно 0,3 В. Ток в цепи коллектора будет равен тому, который протекает в эмиттере. Вычислить можно, разделив напряжение эмиттера на сопротивление R2 - 9В/1 кОм=9 мА. Для вычисления значения тока базы необходимо 9 мА разделить на коэффициент усиления h21 - 9мА/150=60 мкА. В конструкциях УНЧ обычно используются биполярные транзисторы. Принцип работы у него отличается от полевых.

На резисторе R1 теперь можно вычислить значение падения - это разница между напряжениями базы и питания. При этом напряжение базы можно узнать по формуле - сумма характеристик эмиттера и перехода «Э-Б». При питании от источника 20 Вольт: 20 - 9,7 = 10,3. Отсюда можно вычислить и значение сопротивления R1=10,3В/60 мкА=172 кОм. В схеме присутствует емкость С2, необходимая для реализации цепи, по которой сможет проходить переменная составляющая эмиттерного тока.

Если не устанавливать конденсатор С2, переменная составляющая будет очень сильно ограничиваться. Из-за этого такой усилитель звука на транзисторах будет обладать очень низким коэффициентом усиления по току h21. Нужно обратить внимание на то, что в вышеизложенных расчетах принимались равными токи базы и коллектора. Причем за ток базы брался тот, который втекает в цепь от эмиттера. Возникает он только при условии подачи на вывод базы транзистора напряжения смещения.

Но нужно учитывать, что по цепи базы абсолютно всегда, независимо от наличия смещения, обязательно протекает ток утечки коллектора. В схемах с общим эмиттером ток утечки усиливается не менее чем в 150 раз. Но обычно это значение учитывается только при расчете усилителей на германиевых транзисторах. В случае использования кремниевых, у которых ток цепи «К-Б» очень мал, этим значением просто пренебрегают.

Усилители на МДП-транзисторах

Усилитель на полевых транзисторах, представленный на схеме, имеет множество аналогов. В том числе и с использованием биполярных транзисторов. Поэтому можно рассмотреть в качестве аналогичного примера конструкцию усилителя звука, собранную по схеме с общим эмиттером. На фото представлена схема, выполненная по схеме с общим истоком. На входных и выходных цепях собраны R-C-связи, чтобы устройство работало в режиме усилителя класса «А».

Переменный ток от источника сигнала отделяется от постоянного напряжения питания конденсатором С1. Обязательно усилитель на полевых транзисторах должен обладать потенциалом затвора, который будет ниже аналогичной характеристики истока. На представленной схеме затвор соединен с общим проводом посредством резистора R1. Его сопротивление очень большое - обычно применяют в конструкциях резисторы 100-1000 кОм. Такое большое сопротивление выбирается для того, чтобы не шунтировался сигнал на входе.

Это сопротивление почти не пропускает электрический ток, вследствие чего у затвора потенциал (в случае отсутствия сигнала на входе) такой же, как у земли. На истоке же потенциал оказывается выше, чем у земли, только благодаря падению напряжения на сопротивлении R2. Отсюда ясно, что у затвора потенциал ниже, чем у истока. А именно это и требуется для нормального функционирования транзистора. Нужно обратить внимание на то, что С2 и R3 в этой схеме усилителя имеют такое же предназначение, как и в рассмотренной выше конструкции. А входной сигнал сдвинут относительно выходного на 180 градусов.

УНЧ с трансформатором на выходе

Можно изготовить такой усилитель своими руками для домашнего использования. Выполняется он по схеме, работающей в классе «А». Конструкция такая же, как и рассмотренные выше, - с общим эмиттером. Одна особенность - необходимо использовать трансформатор для согласования. Это является недостатком подобного усилителя звука на транзисторах.

Коллекторная цепь транзистора нагружается первичной обмоткой, которая развивает выходной сигнал, передаваемый через вторичную на динамики. На резисторах R1 и R3 собран делитель напряжения, который позволяет выбрать рабочую точку транзистора. С помощью этой цепочки обеспечивается подача напряжения смещения в базу. Все остальные компоненты имеют такое же назначение, как и у рассмотренных выше схем.

Двухтактный усилитель звука

Нельзя сказать, что это простой усилитель на транзисторах, так как его работа немного сложнее, чем у рассмотренных ранее. В двухтактных УНЧ входной сигнал расщепляется на две полуволны, различные по фазе. И каждая из этих полуволн усиливается своим каскадом, выполненном на транзисторе. После того, как произошло усиление каждой полуволны, оба сигнала соединяются и поступают на динамики. Такие сложные преобразования способны вызвать искажения сигнала, так как динамические и частотные свойства двух, даже одинаковых по типу, транзисторов будут отличны.

В результате на выходе усилителя существенно снижается качество звучания. При работе двухтактного усилителя в классе «А» не получается качественно воспроизвести сложный сигнал. Причина - повышенный ток протекает по плечам усилителя постоянно, полуволны несимметричные, возникают фазовые искажения. Звук становится менее разборчивым, а при нагреве искажения сигнала еще больше усиливаются, особенно на низких и сверхнизких частотах.

Бестрансформаторные УНЧ

Усилитель НЧ на транзисторе, выполненный с использованием трансформатора, невзирая на то, что конструкция может иметь малые габариты, все равно несовершенен. Трансформаторы все равно тяжелые и громоздкие, поэтому лучше от них избавиться. Намного эффективнее оказывается схема, выполненная на комплементарных полупроводниковых элементах с различными типами проводимости. Большая часть современных УНЧ выполняется именно по таким схемам и работают в классе «В».

Два мощных транзистора, используемых в конструкции, работают по схеме эмиттерного повторителя (общий коллектор). При этом напряжение входа передается на выход без потерь и усиления. Если на входе нет сигнала, то транзисторы на грани включения, но все равно еще отключены. При подаче гармонического сигнала на вход происходит открывание положительной полуволной первого транзистора, а второй в это время находится в режиме отсечки.

Следовательно, через нагрузку способны пройти только положительные полуволны. Но отрицательные открывают второй транзистор и полностью запирают первый. При этом в нагрузке оказываются только отрицательные полуволны. В результате усиленный по мощности сигнал оказывается на выходе устройства. Подобная схема усилителя на транзисторах достаточно эффективная и способна обеспечить стабильную работу, качественное воспроизведение звука.

Схема УНЧ на одном транзисторе

Изучив все вышеописанные особенности, можно собрать усилитель своими руками на простой элементной базе. Транзистор можно использовать отечественный КТ315 или любой его зарубежный аналог - например ВС107. В качестве нагрузки нужно использовать наушники, сопротивление которых 2000-3000 Ом. На базу транзистора необходимо подать напряжение смещения через резистор сопротивлением 1 Мом и конденсатор развязки 10 мкФ. Питание схемы можно осуществить от источника напряжением 4,5-9 Вольт, ток - 0,3-0,5 А.

Если сопротивление R1 не подключить, то в базе и коллекторе не будет тока. Но при подключении напряжение достигает уровня в 0,7 В и позволяет протекать току около 4 мкА. При этом по току коэффициент усиления окажется около 250. Отсюда можно сделать простой расчет усилителя на транзисторах и узнать ток коллектора - он оказывается равен 1 мА. Собрав эту схему усилителя на транзисторе, можно провести ее проверку. К выходу подключите нагрузку - наушники.

Коснитесь входа усилителя пальцем - должен появиться характерный шум. Если его нет, то, скорее всего, конструкция собрана неправильно. Перепроверьте все соединения и номиналы элементов. Чтобы нагляднее была демонстрация, подключите к входу УНЧ источник звука - выход от плеера или телефона. Прослушайте музыку и оцените качество звучания.

Выходные усилители мощности обычно являются выходными каскадами многокаскадного усилителя и предназначены для обеспечения заданной мощности нагрузки РН при заданном сопротивлении нагрузки RН, как правило, низкоомной. Получение на выходе усилителя большой мощности предполагает работу его транзисторов при больших значениях токов и напряжений. Отсюда следует, что одним из основных параметров усилителя становится его КПД. К тому же переменные составляющие токов и напряжений в этом случае соизмеримы с постоянными составляющими сигналов. На свойства усилителя сильно влияют связь параметров транзистора с режимами его работы и нелинейность характеристик. В выходных усилителях мощности должны использоваться транзисторные каскады с малым выходным сопротивлением, а вводимые цепи ООС должны быть только по напряжению. Это обусловило применение в усилителях мощности только двухтактных схем усиления, обеспечивающих работу транзисторов в режимах класса В и АВ. Усилители, работающих в режиме класса А (выходной транзистор всегда в открытом состоянии), имеют малое КПД, поэтому при больших мощностях сигналов такие схемы используется редко. На рис. 11.17 показана двухтактная схема усилителя мощности, работающая в режиме класса В. Усилитель, собранный на двух биполярных транзисторах различного типа проводимости, имеющих одинаковые параметры, получил название комплементарный усилитель. Транзистор VT1 открыт при положительных значениях сигнала, а транзистор VT2 - при отрицательных. При нулевом входном напряжении коллекторный ток отсутствует и мощность, рассеиваемая на транзисторах, близка к нулю. При выходной мощности 10 Вт каждый транзистор рассеивает мощность менее 10 Вт, максимально возможный коэффициент полезного действия схемы составляет 78%

Рис. 11.17. Двухтактный усилитель мощности, работающий в режиме класса В

Этой схеме присуще следующее свойство: выходной сигнал повторяет входной с разницей на величину падения напряжения UБЭ, на положительном интервале входного сигнала выходное напряжение примерно на 0,6 В меньше, чем входное, на отрицательном интервале наоборот. Для синусоидального входного сигнала выходной будет таким, как показано на рис. 11.11, а. Такое искажение сигнала называется переходным искажением. Для улучшения формы сигнала нужно немного сместить двухтактный каскад в состояние проводимости, как показано на рис.11.18.

Рис.11.18. Двухтактный усилитель, работающий в режиме класса АВ

Резисторы смещения R переводят диоды в состояние проводимости, благодаря чему этому напряжение на базе VT1 превышает входное напряжение на величину напряжения на диоде, а напряжение на базе VT2 на величину падения напряжения на диоде меньше, чем входное напряжение. При нулевом входном сигнале оба транзистора немного приоткрыты, их рабочие точки находятся в начале линейного участка входных характеристик (рис. 11.9). Резистор R выбран так, чтобы обеспечивался необходимый базовый ток в выходных транзисторах при пиковых значениях выходного сигнала. В этой схеме несколько увеличивается мощность, рассеиваемая на транзисторах, и уменьшается КПД. Для улучшения параметров схемы часто используют двухтактный усилитель мощности с операционным усилителем (рис.11.19). В схеме использована общая отрицательная обратная связь (резисторы R1 и R2), охватывающая оба каскада (на операционном усилителе и на биполярных транзисторах), благодаря которой схема создает настолько малые искажения, что часто не требует дополнительных цепей смещения для каскада на транзисторах VT1 и VT2. Поскольку напряжение на нагрузке RН примерно равно напряжению на выходе ОУ, то мощность на выходе усилителя ограничивается выходным напряжением ОУ.

Рис.11.19. Усилитель мощности с ОУ

Рассмотренный выше усилитель имеет один серьезный недостаток: он не обладает температурной стабильностью. При нагревании выходных транзисторов (они нагреваются, так как рассеивают мощность), напряжение uКЭ начинает убывать, а коллекторный ток покоя — возрастать. Выделяющееся при этом дополнительное тепло усугубляет положение и повышает вероятность того, что в схеме получится неконтролируемая тепловая положительная обратная связь (эта вероятность зависит от ряда факторов: насколько велик радиатор для отвода тепла, совпадает ли температура диодов с температурой транзисторов и т.д.). Для исключения этого эффекта используют схему с параметрической температурной стабилизацией режима (рис. 11.20). Для примера здесь показан случай, когда входной сигнал снимается с коллектора предшествующего каскада, резистор выполняет двойную функцию: он является коллекторным резистором транзистора VT1 и формирует ток для смещения диодов и смещающего резистора в основной двухтактной схеме. Резисторы R3 и R4 обычно имеют сопротивление несколько ом и ниже, они уменьшают влияние критического смещения тока покоя: напряжение между базами выходных транзисторов должно быть немного больше, чем удвоенное падение напряжения на диоде, дополнительное падение напряжения обеспечивает регулируемый резистор смещения R2 (иногда его заменяют еще одним диодом).

Рис.11.20. Усилитель с температурной параметрической стабилизацией режима

Падение напряжения на резисторах R3 и R4 составляют несколько десятых долей вольта, благодаря этому температурное изменение напряжения UБЭ не приводит к быстрому возрастанию тока (чем больше падение напряжения на R3 и R4, тем менее чувствителен к температуре усилитель) и схема работает стабильно. Стабильность увеличивается, если диоды имеют тепловой контакт с выходными транзисторами (размещены на их корпусе). Еще одно преимущество схемы состоит в том, что регулировка тока покоя позволит управлять величиной переходных искажений. При выборе тока покоя следует найти компромисс между уменьшением искажений и рассеиваемой мощностью в состоянии покоя. Составной транзистор. Если соединить транзисторы, как показано на рис. 11.21, то полученная схема будет работать как один транзистор, причем его коэффициент β будет равен произведению коэффициентов β составляющих транзисторов.

Рис.11.21. Составной транзистор

Этот прием полезен для схем, работающих с большими токами (например, для стабилизаторов напряжения или выходных каскадов усилителей мощности) или для входных каскадов усилителей, если необходимо обеспечить большой входной импеданс. Для улучшения параметров схемы между базой и эмиттером транзисторов включают резистор R, который предотвращает смещение транзистора VT2 в область проводимости за счет токов утечки транзисторов VT1 и VT2. Сопротивление резистора выбирают таким, чтобы токи утечки создавали на нем падение напряжения, не превышающее падение на диоде в предыдущей схеме, и вместе с тем, чтобы через него протекал ток, малый по сравнению с базовым током транзистора VT2. Обычно сопротивление R составляет несколько сотен ом в мощном составном транзисторе. Промышленность выпускает составные транзисторы в виде законченных модулей, включающих, как правило, и эмиттерный резистор.

Что такое выходной транзистор ? Выходными, или оконечными, транзисторами называют транзисторы, входящие в конструкцию выходных (последних) каскадов в каскадных усилителях (имеющих минимум два или три каскада) частоты. Кроме выходных имеются ещё и предварительные каскады, это все, некоторые расположены до выходного.

Каскад — это транзистор укомплектованный резистором, конденсатором и иными элементами, обеспечивающими его работу в качестве усилителя. Всё имеющееся в усилителе количество предварительных каскадов должно обеспечивать увеличение напряжения частоты таким образом, чтобы полученное значение было пригодно для функционирования выходного транзистора. В свою очередь сам выходной транзистор повышает мощность частотных колебаний до значения, обеспечивающего работу динамической головки.

При сборке максимально простых транзисторных усилителей выходной транзистор берётся такой же маломощный, как и на предварительных каскадах. Многие находят это весьма уместным с точки зрения эргономичности прибора. Показания выходной мощности у подобного усилителя невелики: от 10-20 мВт до полутора сотен.

В ситуациях, когда проблема экономии не стоит так остро, то в конструкции выходного каскада используется транзистор с более высокими мощностными показаниями.

Качественность работы усилителя определяют несколько параметров, но максимально точное представление можно получить по: данным о выходной мощности (Р вых), чувствительности и частотной характеристике.

Измерить ток покоя выходного транзистора

Током покоя называют коллекторный ток, который проходит по транзисторам выходных каскадов при условии, что сигнал отсутствует. В условно-идеальных (невозможных на самом деле) условиях значение такого тока должно находиться на нулевой отметке. На деле это не совсем так, собственная температура и характерные различия разнотипных транзисторов влияют на данный показатель. В наихудшем случае возможен перегрев, который станет причиной теплового пробоя транзистора.

Кроме того, существует ещё один показатель — напряжение покоя. Он демонстрирует значение напряжения соединительной точки транзисторов. Если питание у каскада двухполярное, то напряжение будет равно нулю, а если однополярное, тогда напряжение составляет 1/2 питающего напряжения.

Оба эти показателя должны быть стабилизированы и для этого в качестве первоочередной меры следует озаботиться о контроле температурного режима.

На роль стабилизатора обычно берётся дополнительный транзистор, которые в качестве балласта подсоединяется к базовым цепям (наиболее часто он при этом оказывается прямо на радиаторе, максимально близко к выходным транзисторам).

Чтобы выявить, каков ток покоя выходных транзисторов или каскадов, необходимо при помощи мультиметра измерить данные по падению напряжения для его эммитерных резисторов (значения обычно выражаются в милливольтах), а потом, опираясь на закон Ома и данные по реальному сопротивлению, можно будет вычислить нужный показатель: значение падения напряжения разделить на значение реального сопротивления — значения тока покоя для данного выходного транзистора.

Все замеры необходимо производить весьма осторожно, иначе придётся производить замену транзистора .

Есть ещё один способ, гораздо менее травмоопасный. Взамен предохранителей потребуется установить сопротивление в 100 Ом и минимальную мощность в 0,5 Ватт для каждого канала. При отсутствии предохранителей сопротивление подсоединяется к разрыву питания. После осуществляется подача питания усилителю, производятся замеры показаний по падению напряжения на приведённом выше уровне сопротивления. Дальнейшая математика до крайности проста: падению напряжения в 1 В соответствует ток покоя величиной в 10мА. Аналогичным образом при 3,5 В получится 35 мА и так далее.

Классификация выходных каскадов

Есть несколько методов сборки выходного каскада:

  • Из транзисторов, имеющих различную проводимость. Для этих целей чаще всего используют «комплементарные» (близкие по параметрам) транзисторы.
  • Из транзисторов, имеющих одинаковую проводимость.
  • Из транзисторов составного типа.
  • Из полевых транзисторов.

Работа усилителя, сконструированного, при помощи комплементарных транзисторов, отличается простотой: положительная сигнальная полуволна запускает работу одного транзистора, а отрицательная — другого. Необходимо, чтобы плечи (транзисторы) работали в одинаковых режимах и для реализации этого используется базовое смещение.

Если усилитель использует в работе одинаковые транзисторы, то никаких принципиальных отличий от первого варианта это не имеет. За исключением того факта, что для подобных транзисторов сигнал отличаться не должен.

При работе с остальными разновидностями усилителей необходимо помнить, что отрицательное напряжение для p-n-p транзисторов, и положительное — для n-p-n транзисторов.

Обычно звание усилителя мощности принадлежит именно оконечному каскаду, поскольку он работает с самыми большими величинами, хотя с технической точки зрения так можно называть и предварительные каскады. К числу основных показателей усилителя можно отнести: полезную, отдаваемую в нагрузку мощность, КПД, полосу усиливаемых частот, коэффициент нелинейных искажений. На эти показатели весьма сильно влияет выходная характеристика транзистора. При создании усилителя напряжения может быть использована однотактная и двутактная схемы. В первом случае режим работы усилителя линейный (класс А). Данная ситуация характеризуется тем, что протекание тока по транзистору длится до тех пор пока не окончится период входного сигнала.

Однотактный усилитель отличается высокими показателями по линейности. Однако эти качества могут искажаться при намагничивании сердечника. Для предотвращения подобной ситуации необходимо озаботиться наличием цепи трансформатора с высоким уровнем индуктивности для первичной цепи. Это отразится на размерах трансформатора. К тому же, ввиду принципа его работы, он обладает достаточно низким КПД.

В сравнении с ним данные по двутактному усилителю (класс B) куда выше. Данный режим позволяет искажать форму транзисторного тока на выходе. Это увеличивает результат отношения переменного и постоянного токов, снижая вместе с тем уровень потребляемой мощности, это и считается самым главным плюсом применения двутактных усилителей. Их работа обеспечивается подачей двух равных по значению, но фазно противоположных напряжений. Если отсутствует трансформатор со средней точкой, то можно воспользоваться фазоинверсным каскадом, который снимет противоположные по фазе напряжения с соответственных резисторов цепей коллектора и эмиттера.

Существует двухтактная схема, не включающая в себя выходной трансформатор. Для этого потребуются разнотипные транзисторы, работающие как эмиттерные повторители. Если оказывать воздействие двуполярным входным сигналом, то будет происходить поочерёдное открытие транзисторов, и расхождение токов по противоположным направлениям.

Замена транзисторов

Поскольку УНЧ (усилители низких частот) становятся всё популярнее, то совершенно не лишним будет узнать, что делать, если такой прибор выйдет из строя.

В случае, если греется выходной транзистор, то велика вероятность, что он сломался или перегорел. В такой ситуации необходимо:

  • Удостовериться в целостности всех прочих диодов и транзисторов, входящих в усилитель;
  • Когда будет производиться ремонт очень желательно подсоединять усилитель к сети через лампочку в 40-100 В, это поможет сберечь оставшиеся целыми транзисторы при любых обстоятельствах;
  • В первую очередь перемыкается участок эмиттер-база и транзисторы, потом осуществляется первичная диагностика УНЧ (любые изменения и реакции легко регистрируются при помощи свечения лампы);
  • Основным показателем рабочего состояния и адекватной настройки транзистора можно считать данные по напряжению для участка база-эмиттер.
  • Выявлять данные по напряжению межу корпусом и отдельными участками схемы — занятие практически бесполезное, никаких сведений о возможной поломке оно не даёт.

Даже наиболее упрощённый вариант проверки (до и после того как замена выходных транзисторов была произведена) обязательно должен включать в себя несколько пунктов:

  • К базе и эмиттеру выходного транзистора подать минимальное напряжение, чтобы установился ток покоя;
  • Проверить результативность своих действий по звуку или при помощи осциллографа («ступенька» и искажения сигнала при мощностном минимуме должны отсутствовать);
  • При помощи осциллографа выявить симметрию по ограничениям на резисторы при максимальной мощности работы усилителя.
  • Удостовериться, что «паспортная» и действительная мощности усилителя совпадают.
  • Обязательно требуется проверить рабочее состояние токоограничительных цепей, при наличии таковых на оконечном каскаде. Здесь не обойтись без регулируемого нагрузочного резистора.

Первое включение после того как ремонтные работы были произведены:

  1. Нежелательно сразу же устанавливать выходные транзисторы, для начала прибор задействуется только с предварительным каскадом (каскадами), и лишь после этого подсоединять оконечный. В ситуациях, когда осуществить включение без выходного транзистора технически невозможно, следует заменить резисторы на имеющие номинальное значение в 5-10 Ом. Это исключит вероятность перегорания транзистора.
  2. Перед тем как осуществлять каждое повторное включение усилителя потребуется разрядка электролитических конденсаторов питания УНЧ.
  3. Проконтролировать данные по току покоя в условиях низкой и высокой температуры радиатора. Разница при соотношении должна быть не более двух раз. В противном случае придётся заняться термостабилизатором УНЧ.

Большинство современных транзисторных усилителей звуковой частоты построены по традиционной схеме: за входным дифференциальным каскадом следует усилитель напряжения и выходной двухтактный бестрансформаторный каскад с последовательным питанием транзисторов по постоянному току, двуполярным источником питания и непосредственным, без переходного конденсатора, подключением нагрузки (рис. 1).

На первый взгляд, все это традиционно и хорошо известно. Однако каждый усилитель звучит по-своему. В чем же дело? А дело все в схемотехнических решениях отдельных каскадов, качестве применяемой элементарной базы, выборе режимов активных элементов, конструктивных решениях аппаратов. Но все по порядку.

Входной каскад

Хорошо известный дифференциальный каскад на самом деле не так прост, как кажется на первый взгляд. От его качества во многом зависят такие параметры усилителя, как отношение сигнал/шум и скорость нарастания выходного напряжения, а также напряжение смещения “нуля” и температурная стабильность усилителя.

Отсюда первый вывод: переход от неинвертирующего включения к инвертирующему существенно повышает качество звучания усилителя. Осуществить такой переход на практике в готовом устройстве довольно легко. Для этого достаточно подать сигнал с входных разъемов на конденсатор С2, предварительно отсоединив его от шины нулевого потенциала усилителя, и удалить конденсатор С1.

Входное сопротивление инвертирующего усилителя практически равно сопротивлению резистора R2. Это намного меньше, чем входное сопротивление неинвертирующего усилителя, которое определяется резистором R1. Поэтому чтобы сохранить неизменной АЧХ в области низких частот, в ряде случаев требуется увеличить емкость конденсатора С2, которая должна быть во столько раз больше емкости конденсатора С1, во сколько сопротивление резистора R1 больше сопротивления резистора R2. Кроме того, для сохранения неизменным коэффициента усиления всего устройства придется подобрать резистор R3 в цепи ООС, т.к. коэффициент усиления инвертирующего усилителя К = R3/R2, а неинвертирующего К = 1 + R3/R2. При этом для минимизации напряжения смещения нуля на выходе резистор R1 необходимо подобрать с тем же сопротивлением, что у вновь установленного резистора R3.

Если все же необходимо сохранить неинвертирующее включение первого каскада, но при этом устранить влияние синфазных искажений, следует повысить выходное сопротивление источника тока, заменив резистор R7 в эмиттерных цепях дифференциального каскада на транзисторный источник стабильного тока (рис. 4). Если такой источник в усилителе уже имеется, повысить его выходное сопротивление можно, увеличив номинал резистора R14 в эмиттере транзистора VT8. При этом для сохранения неизменной величины тока через этот транзистор следует увеличить опорное напряжение на его базе, например, заменив стабилитрон VD1 на другой, с более высоким напряжением стабилизации.

Весьма эффективным путем снижения искажений усилителя является использование в дифференциальном каскаде однотипных транзисторов, предварительно подобранных по статическому коэффициенту усиления и напряжению база – эмиттер.

Такой способ неприемлем при серийном производстве усилителей, но вполне подходит при модернизации единичных экземпляров готовых устройств. Отличные результаты дает установка в дифференциальном каскаде транзисторной сборки из двух транзисторов, выполненных в едином технологическом процессе на одном кристалле и поэтому имеющих близкие значения вышеуказанных параметров.

Снижению искажений способствует также введение в первый каскад усилителя местной отрицательной обратной связи по току посредством установки в цепях эмиттеров транзисторов VT1, VT2 резисторов с сопротивлением до 100 Ом (R9, R10). При этом может потребоваться некоторая корректировка сопротивления резистора R3 в цепи ООС.

Разумеется, этим не исчерпываются все способы модернизации входного дифференциального каскада. Возможна также установка вместо однотранзисторного двухтранзисторного источника тока с рекордными показателями выходного сопротивления, введение так называемого токового зеркала в усилителях с несимметричным съемом сигнала с первого каскада на каскад усиления напряжения, включение каждого из транзисторов по каскодной схеме и т.д. Однако такие переделки трудоемки и не всегда конструкция усилителя позволяет их выполнить.

Выходной каскад

Выходной каскад является основным источником искажений в любом усилителе мощности. Его задачей является формирование неискаженного сигнала требуемой амплитуды в рабочем диапазоне частот на низкоомной нагрузке.

Рассмотрим традиционный каскад на комплементарных парах биполярных транзисторов, включенных по схеме двухтактного эмиттерного повторителя. У биполярных транзисторов существует емкость p-n-перехода эмиттер– база, которая может достигать величины десятых и сотых долей микрофарады. Величина этой емкости влияет на граничную частоту транзисторов. При подаче на вход каскада положительной полуволны сигнала работает верхнее плечо двухтактного каскада (VT4, VT6). Транзистор VТ4 включен по схеме с общим коллектором и имеет малое выходное сопротивление, поэтому протекающий через него ток быстро заряжает входную емкость транзистора VT6 и открывает его. После изменения полярности входного напряжения включается нижнее плечо выходного каскада, а верхнее выключается. Транзистор VТ6 закрывается. Но чтобы полностью закрыть транзистор, необходимо разрядить его входную емкость. Разряжается она, в основном, через резисторы R5 и R6, причем относительно медленно. К моменту включения нижнего плеча выходного каскада полностью разрядиться эта емкость не успевает, поэтому транзистор VТ6 полностью не закрывается, и через транзистор VТ7, помимо своего, протекает коллекторный ток транзистора VТ6. В результате из-за возникновения сквозного тока на высоких частотах при большой скорости переключения не только повышается рассеиваемая транзисторами мощность и падает КПД, но и растут искажения сигнала. Простейший способ устранения описанного недостатка – уменьшение сопротивления резисторов R5 и R6. Однако при этом возрастает мощность, рассеиваемая на транзисторах VТ4 и VТ5. Более рациональный способ уменьшить искажения – изменить схему выходного каскада усилителя таким образом, чтобы форсировать рассасывание избыточного заряда (рис. 5). Этого можно добиться с помощью подключения резистора R5 к эмиттеру транзистора VТ5.

В случае высокого выходного сопротивления предоконечного каскада избыточный заряд может накапливаться и на базах транзисторов VT4 и VT5. Для устранения этого явления необходимо соединить базы этих транзисторов с точкой нулевого потенциала усилителя через резисторы R11 и R12 с номиналами 10…24 кОм.

Описанные меры достаточно эффективны. По сравнению с типовым включением, скорость убывания коллекторного тока в выходном каскаде после описанных переделок оказывается приблизительно в четыре раза больше, а искажение на частоте 20 кГц – примерно втрое меньше.

Очень важное значение с точки зрения вносимых искажений имеет предельная граничная частота используемых транзисторов, а также зависимость их статического коэффициента усиления по току и граничной частоты от тока эмиттера. Поэтому дальнейшего улучшения качественных показателей усилителей с выходным каскадом на биполярных транзисторах можно достичь путем замены выходных транзисторов на более высокочастотные с меньшей зависимостью коэффициента усиления от тока эмиттера. В качестве таких транзисторов можно порекомендовать комплементарные пары 2SA1302 и 2SC3281; 2SA1215 и 2SC2921; 2SA1216 и 2SC2922. Все транзисторы производства фирмы Toshiba в корпусах ТО-247.

В значительной степени на качество звучания усилителя влияет его способность работать на низкоомную нагрузку, т.е. отдавать в нагрузку максимальный ток сигнала без искажений.

Известно, что любая акустическая система (сокращенно АС) характеризуется модулем выходного комплексного сопротивления Z. Обычно величина этого сопротивления указывается в паспортах серийных АС бытового назначения и составляет 4 или 8 Ом. Однако это верно только на какой-то одной частоте, обычно на 1 кГц. В диапазоне же рабочих частот модуль комплексного сопротивления изменяется в несколько раз и может уменьшаться до 1…2 Ом. Другими словами, для непериодических импульсных сигналов с широким спектром, к которым относится музыкальный сигнал, АС представляет для усилителя низкоомную нагрузку, с которой многие из серийных усилителей просто не справляются.

Поэтому наиболее эффективным способом улучшения качественных показателей выходного каскада при работе на реальную комплексную нагрузку является увеличение количества транзисторов в плечах двухтактного усилителя. Это позволяет не только повысить надежность усилителя, так как расширяется область безопасной работы каждого транзистора, но, самое главное, снизить искажения за счет перераспределения коллекторных токов между транзисторами. В этом случае сужается диапазон изменения тока коллектора и, соответственно, коэффициента усиления, что приводит к уменьшению искажений на низкоомной нагрузке, разумеется, при соблюдении определенных требований к источнику питания.

Совсем радикальным способом, позволяющим коренным образом улучшить звучание усилителя, является замена биполярных транзисторов в выходном каскаде на полевые с изолированным затвором (MOSFET).

По сравнению с биполярными MOSFET выгодно отличаются лучшей линейностью проходных характеристик и существенно более высоким быстродействием, т.е. лучшими частотными свойствами. Эти особенности полевых транзисторов в случае их применения позволяют относительно простыми средствами доводить параметры и качество звучания модернизируемого усилителя до самого высокого уровня, что неоднократно подтверждено на практике. Улучшению линейности выходного каскада способствует и такая особенность полевых транзисторов, как высокое входное сопротивление, что позволяет обойтись без предоконечного каскада, выполняемого обычно по схеме Дарлингтона, и дополнительно снизить искажения, сократив путь сигнала.

Отсутствие явления вторичного теплового пробоя у полевых транзисторов расширяет область безопасной работы выходного каскада и тем самым позволяет повысить надежность работы усилителя в целом, а также в некоторых случаях упростить цепи температурной стабилизации тока покоя.

И последнее. Для повышения надежности усилителя не лишним будет установка защитных стабилитронов VD3, VD4 с напряжением стабилизации 10…15 В в цепи затворов транзисторов. Эти стабилитроны будут защищать от пробоя затвор, величина обратного пробивного напряжения которого обычно не превышает 20 В.

При анализе цепей установки начального смещения выходного каскада любого усилителя следует обратить внимание на два момента.

Первый момент связан с тем, какой начальный ток покоя установлен. Многие зарубежные производители устанавливают его в пределах 20…30 мА, что явно недостаточно с точки зрения высококачественного звучания на малых уровнях громкости. Хотя видимые искажения типа “ступенька” в выходном сигнале отсутствуют, недостаточная величина тока покоя приводит к ухудшению частотных свойств транзисторов, и как следствие, к неразборчивому, “грязному” звучанию на малых уровнях громкости, “замазыванию” мелких деталей. Оптимальной величиной тока покоя следует считать 50…100 мA. Если в усилителе установлено несколько транзисторов в плече, то эта величина относится к каждому транзистору. В подавляющем большинстве случаев площадь радиаторов усилителя позволяет долговременно отводить от выходных транзисторов тепло при рекомендованной величине тока покоя.

Второй, очень важный момент состоит в том, что нередко применяемый в классической схеме установки и термостабилизации тока покоя высокочастотный транзистор возбуждается на высоких частотах, причем его возбуждение очень сложно обнаружить. Поэтому желательно использовать вместо него низкочастотный транзистор с f т В любом случае замена этого транзистора на низкочастотный гарантирует от неприятностей. Устранить динамическое изменение напряжения помогает и включение между коллектором и базой конденсатора С4 емкостью до 0,1 мкФ.

Частотная коррекция усилителей мощности

Важнейшим условием обеспечения высококачественного звуковоспроизведения является снижение до возможного минимума динамических искажений транзисторного усилителя. В усилителях с глубокой ООС этого можно достичь, уделив серьезное внимание частотной коррекции. Как известно, реальный звуковой сигнал имеет импульсный характер, поэтому достаточное для практических целей представление о динамических свойствах усилителя можно получить по его реакции на скачок входного напряжения, которое, в свою очередь, зависит от переходной характеристики. Последняя может быть описана с помощью коэффициента затухания. Переходные характеристики усилителей при различных значениях этого коэффициента приведены на рис. 7.

По величине первого выброса выходного напряжения U вых = f(t) можно сделать однозначный вывод об относительной устойчивости усилителя. Как видно из приведенных на рис. 7 характеристик, этот выброс максимален при малых коэффициентах затухания. Такой усилитель обладает малым запасом устойчивости и при прочих равных условиях имеет большие динамические искажения, которые проявляют себя в виде «грязного», «непрозрачного» звучания, особенно на высоких частотах слышимого звукового диапазона.

С точки зрения минимизации динамических искажений, наиболее удачен усилитель с апериодической переходной характеристикой (коэффициент затухания менее 1). Однако реализовать на практике такой усилитель технически очень сложно. Поэтому большинство фирм-производителей идут на компромисс, обеспечивая более низкий коэффициент затухания.

На практике оптимизация частотной коррекции осуществляется следующим образом. Подав с генератора импульсов на вход усилителя сигнал типа «меандр» частотой 1 кГц и наблюдая переходный процесс на выходе с помощью осциллографа, подбором емкости корректирующего конденсатора добиваются формы выходного сигнала, наиболее приближенной к прямоугольной.

Влияние конструкции усилителя на качество звука

В хорошо спроектированных усилителях, с тщательно проработанной схемотехникой и режимами работы активных элементов, к сожалению, далеко не всегда продуманы вопросы конструктивного исполнения. Это приводит к тому, что искажения сигнала, вызванные монтажными наводками от токов выходного каскада на входные цепи усилителя, вносят заметный вклад в общий уровень искажений всего устройства. Опасность таких наводок состоит в том, что формы токов, проходящих по цепям питания плеч двухтактного выходного каскада, работающего в режиме класса АВ, сильно отличаются от форм токов в нагрузке.

Второй конструктивной причиной повышенных искажений усилителя является неудачная разводка «земляных» шин на печатной плате. Из-за недостаточного сечения на шинах происходит заметное падение напряжения, создаваемое токами в цепях питания выходного каскада. В результате потенциалы «земли» входного каскада и «земли» выходного каскада становятся различными. Происходит так называемое искажение «опорного потенциала» усилителя. Эта постоянно изменяющаяся разность потенциалов добавляется на входе к напряжению полезного сигнала и усиливается последующими каскадами усилителя, что равноценно наличию помехи и приводит к росту гармонических и интермодуляционных искажений.

Для борьбы с такой помехой в готовом усилителе необходимо проводами достаточно большого сечения соединить в одной точке (звездой) шины нулевого потенциала входного каскада, нулевого потенциала нагрузки и нулевого потенциала источника питания. Но наиболее радикальным способом устранения искажения опорного потенциала является гальваническая развязка общего провода входного каскада усилителя от мощной шины питания. Такое решение возможно в усилителе с дифференциальным входным каскадом. С общим проводом источника сигнала (левым на схеме на рис. соединены лишь выводы резисторов R1 и R2. Все остальные проводники, соединенные с общим проводом, подключены к мощной шине источника питания, правой на схеме. Однако в этом случае отключение по каким-либо причинам источника сигнала может привести к выходу усилителя из строя, так как левая «земляная» шина оказывается ни к чему не подключенной и состояние выходного каскада становится непредсказуемым. Во избежание аварийной ситуации обе «земляные» шины соединяют между собой резистором R4. Его сопротивление должно бить не очень маленьким, чтобы помехи от мощной шины питания не могли попасть на вход усилителя, и в то же время не слишком большим, чтобы не влиять на глубину ООС. На практике сопротивление резистора R4 составляет около 10 Ом.

Энергоемкость источника питания

В подавляющем большинстве промышленных усилителей емкость накопительных (фильтрующих) конденсаторов блока питания явно недостаточна, что объясняется исключительно экономическими причинами, т.к. электрические конденсаторы больших номиналов (от 10 000 мкФ и более) – явно не самые дешевые компоненты. Недостаточная емкость фильтрующих конденсаторов приводит к «зажатости» динамики усилителя и повышению уровня фона, т.е. к ухудшению качества звучания. Практический опыт автора в области модернизации большого числа различных усилителей свидетельствует о том, что «настоящий звук» начинается при энергоемкости источника питания не менее 75 Дж на канал. Для обеспечения такой энергоемкости требуется суммарная емкость фильтрующих конденсаторов не менее 45 000 мкФ при напряжении питания 40 В на одно плечо (Е = CU 2 /2).

Качество элементной базы

Далеко не последнюю роль в обеспечении высокого качества звучания усилителей играет качество элементной базы, причем главным образом пассивных компонентов, т.е. резисторов и конденсаторов, а также монтажных проводов.

И если большинство производителей применяет в своих изделиях постоянные углеродистые и металлопленочные резисторы достаточно высокого качества, то этого нельзя сказать в отношении постоянных конденсаторов. Стремление сэкономить на себестоимости продукции часто приводит к плачевным результатам. В тех цепях, где необходимо использовать высококачественные пленочные полистироловые или полипропиленовые конденсаторы с малыми диэлектрическими потерями и низким коэффициентом диэлектрической абсорбции, зачастую установлены грошовые оксидные конденсаторы или, что несколько лучше, конденсаторы с диэлектриком из лавсановой (полиэтилентерафталат) пленки. Из-за этого даже грамотно спроектированные усилители звучат «неразборчиво», «мутно». При воспроизведении музыкальных фрагментов отсутствуют детали звучания, нарушен тональный баланс, явно не хватает скорости, что проявляется в вялой атаке звучания музыкальных инструментов. При этом страдают и другие аспекты звука. В целом звучание оставляет желать лучшего.

Поэтому при модернизации действительно высококачественных усилительных устройств необходимо заменить все низкокачественные конденсаторы. Хорошие результаты дает применение конденсаторов фирм Siemens, Philips, Wima. При доводке дорогих аппаратов высокого класса лучше всего использовать конденсаторы американской компании Reelcup типов PPFX, PPFX-S, RTX (типы указаны в порядке возрастания стоимости).

И в последнюю очередь следует обратить внимание на качество диодов выпрямителя и монтажных проводов.

Повсеместно применяемые в блоках питания усилителей мощные выпрямительные диоды и выпрямительные мосты обладают низким быстродействием из-за наличия эффекта рассасывания неосновных носителей заряда в p-n-переходе. В результате при смене полярности подводимого к выпрямителю переменного напряжения промышленной частоты находящиеся в открытом состоянии диоды закрываются с некоторой задержкой, что в свою очередь приводит к появлению мощной импульсной помехи. Помеха проникает по цепям питания в звуковой тракт и ухудшает качество звучания. Для борьбы с этим явлением необходимо применять быстродействующие импульсные диоды, а еще лучше диоды Шоттки, в которых эффект рассасывания неосновных носителей заряда отсутствует. Из доступных можно рекомендовать диоды фирмы International Rectifier. Что касается монтажных проводов, то лучше всего заменить, имеющиеся обычные монтажные провода на кабели большого сечения из бескислородной меди. Прежде всего следует заменить провода, передающие усиленный сигнал к выходным клеммам усилителя, провода в цепях питания, а также по мере необходимости проводку от входных гнезд до входа первого усилительного каскада.

Конкретные рекомендации по маркам кабелей дать затруднительно. Все зависит от вкуса и финансовых возможностей владельца усилителя. Из известных и доступных на нашем рынке можно рекомендовать кабели фирм Kimber Kable, XLO, Audioquest.

Поделиться: