Индикатор разряда аккумулятора. Простой индикатор состояния литиевых аккумуляторов Схема контроля разряда аккумулятора

Индикатор заряда аккумулятора – нужная штука в хозяйстве любого автомобилиста. Актуальность такого устройства возрастает многократно, когда холодным зимним утром автомобиль, почему-то, отказывается заводиться. В этой ситуации стоит определиться, то ли звонить другу, что бы тот приехал и помог завестись от своей батареи, либо аккумулятор приказал долго жить, разрядившись ниже критического уровня.

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб. Напряжение, В (без нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1110 11,7 8,4 0,0 -7
1130 11,8 8,7 10,0 -9
1140 11,9 8,8 20,0 -11
1150 11,9 9,0 25,0 -13
1160 12,0 9,1 30,0 -14
1180 12,1 9,5 45,0 -18
1190 12,2 9,6 50,0 -24
1210 12,3 9,9 60,0 -32
1220 12,4 10,1 70,0 -37
1230 12,4 10,2 75,0 -42
1240 12,5 10,3 80,0 -46
1270 12,7 10,8 100,0 -60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

  • аналоговые;
  • цифровые.

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.


Принципиальная схема индикатора

Как сделать индикатор заряда аккумулятора на светодиодах?

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3 , ниже 12В — VD1 .

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284) .

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

Индикатор разряда аккумулятора предназначен для получения оперативного предупреждения о разряде аккумуляторной батареи, что поможет защитить вас от многих проблем. Предлагаемая схема достаточно проста, а вся регулировка заключается в выставление порога срабатывания переменным резистором для включения светодиодной индикации.

Чтобы максимально упростить самодельную конструкцию, информация о степени разряда батареи поступает по принципу светодиодного столбика, то есть чем выше напряжение на батареи, тем больше светодиодов загорается. Нижний уровень отмечается красным светодиодом (верхний по схеме), на максимальное напряжение указывает нижний зеленый светодиод. Полное отсутствие свечения говорит о сильной критическом разряде аккумулятора.

В основе конструкции лежат четыре компаратора операционного усилителя LM324, каждый из них контролирует определенный уровень напряжения.

Опорное напряжение в 5 вольт для всех четырех компараторов идет со стабилитрона и сопротивления R6.

Если на прямом входе ОУ потенциал будет меньше потенциала на его инверсном входе, на выходе компаратора присутствует низкий логический уровень и светодиод не горит. Если опорное напряжение превысит потенциал на противоположном входе компаратор переключается, и светодиод загорится. Для каждого компаратора установлен свой персональный уровень, который настраивается сопротивлением делителя на резисторах R1-R5.

Вариант этой конструкции, но уже на операционном усилителе LM 339 подойдет для аккумуляторов с выходным напряжением 6 или 12 вольт.

В арсенале отечественных микросхем имеется серия КР1171, которые специально разработаны для контроля снижения напряжения питания. Вот и используем ее для контроля напряжения в аккумуляторной батареи.

Малый потребляемый ток в режиме «Вык.» позволяет встраивать данную конструкцию в устройства с непрерывным контролем напряжения аккумуляторной батареи. При этом индикатор можно подключить до выключателя питания устройства, напрямую к клеммам аккумуляторной батареи. Для переделки данной схемы индикатора на другое напряжение достаточно использовать соответствующую микросхему серии КР1171 и подобрать резистор R1 для нового напряжения. Исключение составляет только микросхема КР1171СП20, т. к. ее пороговый уровень 2В, а генератор на микросхеме К561ЛА7 не работает.

Для достижения минимальных размеров можно вместо динамика использовать миниатюрный излучатель. C помощью сопротивления R6 можно регулировать громкость звука.

Данная конструкция рассчитана на напряжение аккумуляторной батареи от 6 до 24 вольт.

Схема состоит из делителя напряжения на резисторах R1 R2, первый транзистор реагирует на уменьшение напряжения ниже заданного значения, а электронный ключ на втором транзисторе, через стоковую цепь запускает свepxъяркий светодиод.

При подключении схемы к аккумуляторной батареи, напряжение котopoгo необходимо контролировать, на затворе первого транзистора появляется напряжение положительной полярности, регулируемое резистором R2. Если оно выше порогового - транзистор открыт, сопротивление его канала не выше десятка Ом, поэтому напряжение на стоке второго транзистора VТ2 стремится к нулю и он закрыт, светодиод соответственно не горит, сигнализируя о том, что напряжение аккумуляторной батареи в норме. При снижении напряжения до порогового уровня, при котором напряжение на затворе первого транзистора становится ниже порогового, он закрывается, сопротивление его канала резко возрастает и напряжение на стоке стремится к значению напряжения питания. При этом открывается транзисторный ключ и светодиод загорается, говоря о недопустимой степени разряда аккумуляторной батареи.

На транзисторах VT2, VT3 построен триггер Шмитта, на VT1 - модуль запрета его срабатывания. В коллекторную цепь VT3 включен индикатор HL1, размещенный на приборной панели. В горячем состоянии нить накала индикатора обладает сопротивление в районе 50 Ом. Сопротивление холодной нити индикатора в несколько раз ниже. Поэтому транзистор VT3 выдерживает бросок тока в коллекторной цепи до уровня 2,5 А.

Напряжение бортовой сети за минусом напряжения на стабилитроне VD2 через делитель R5-R6 поступает на базу VT2. Если оно выше 13,5 В, триггер Шмитта переключается и транзистор VT3 закрыт, а HL1 не светится.

Очередная поделка выходного дня – индикатор разряда для аккумуляторной батареи.
Батарея боится переразряда, от этого зависит срок её службы и надо контролировать её напряжение, чтоб вовремя ставить на зарядку; а мамка в ближайшее время денег на новые «батарейки» не даст.

Собираем индикатор разряда АКБ, специально для начинающих: простой, из «мусора». Вариантов в интернете миллион, я выбрал вот такую схему. Собрал на макетке, поэкспериментировал с ней – работает. Может, кому пригодится. А вот собственно и схемка:

При таких номиналах деталей я настраивал подстроечником R2 (нашел в хламе многооборотный ELECTRON на 10кОм) порог срабатывания на 8 и на 5 вольт. Гистерезис в первом случае составляет 0,4 В, во втором – 0,15 В. Кстати, подстроечник действительно лучше взять многооборотный, но только килоома на 3, ибо при уставке 8В его сопротивление равно примерно 1,6кОм, а для 5В - примерно 2,6кОм.

Изменить гистерезис можно подбором резистора R4, но если его сопротивление будет слишком малым, страдает пороговость включения: светодиод будет загораться плавно, что не есть гут; а если большим (десятки Ом) – гистерезис будет огромным, до нескольких вольт, что тоже паршиво. Ещё у меня есть сомнения по поводу термостабильности данной схемы, но в условиях комнаты работает неплохо. На схеме обозначен ток потребления при погасшем/зажженном светодиоде и напряжении на входе 5 В.
«Отака, малята, фигня…»

Ниже на фото на Макетной плате собрана и показана работа этой схемки. Итак, при напряжении 8,25 Вольт у нас светодиод не загорается.

Но как только напряжение упало до 8 Вольт, то у нас светодиод сразу же сигнализирует о малом напряжении.

Применение этой схемы можно найти в различной радиоаппаратуре, которая питается электрохимическими элементами. Можно также доработать этот каскад и вместо светодиода поставить другую цепь, которая бы включала или выключала резервное питание или зарядку на АКБ.

» поступил комментарий с интересными предложениями по доработке конструкции.

Так как индикатор разряда батареи (п.3 комментария) целесообразно применять на любом автономном электронном устройстве, для исключения неожиданных сбоев или отказа аппаратуры в самый неподходящий момент при разряде батареи, то изготовление индикатора разряда вынесено отдельной статьей.

Применение индикатора разряда особенно важно для большинства литиевых аккумуляторов с номинальным напряжением 3.7 вольта (например, популярные сегодня 18650 и им аналогичные или распространенные плоские Li-ion аккумуляторы от заменяемых на смартфоны телефонов), т.к. они очень «не любят» разряд ниже 3,0 вольт и выходят при этом из строя. Правда, в большинство из них должны быть встроены схемы аварийной защиты от глубокого разряда, но кто знает какой аккумулятор в ваших руках, пока вы его не вскроете (Китай полон загадок).

Но главное, хотелось бы заранее узнать, какой заряд в настоящее время имеется в используемом аккумуляторе. Тогда мы могли бы вовремя подключить зарядку или поставить новый аккумулятор, не дожидаясь грустных последствий. Поэтому нам нужен индикатор, который заранее подаст сигнал о том, что аккумулятор скоро сядет окончательно. Для реализации этой задачи существуют различные схемотехнические решения - от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

В нашем случае, предлагается изготовить простой индикатор разряда литиевых аккумуляторов, который с легкостью собирается своими руками . Индикатор разряда отличается экономичностью и надежностью, компактностью и точностью определения контролируемого напряжения.

Схема индикатора разряда


Схема выполнена с применением, так называемых детекторов напряжения. Их еще называют мониторами напряжения. Это специализированные микросхемы, разработанные специально для контроля напряжения. Неоспоримые достоинства схем на мониторах напряжения - чрезвычайно низкое энергопотребление в дежурном режиме, а также ее крайняя простота и точность. Чтобы сделать индикацию разряда еще более заметной и экономичной, выход детектора напряжения нагружаем на мигающий светодиод или "мигалку" на двух биполярных транзисторах.

Применяемый в схеме детектор напряжения (DA1) PS Т529Н соединяет выход (вывод 3) микросхемы с общим проводом, при снижении контролируемого напряжения на батарее до 3,1 вольта, включая этим питание на генератор импульсов высокой скважности. При этом сверхяркий светодиод начинает вспыхивать с периодом: пауза - 15 сек., короткая вспышка - 1 сек. Это позволяет снизить потребляемый ток до 0,15 ma в паузе, и 4,8 ma при вспышке. При напряжении на аккумуляторе более 3,1 вольта, схема индикатора практически отключается и потребляет всего 3 мкa.

Как показала практика, указанного цикла индикации вполне достаточно, чтобы увидеть сигнал. Но при желании можно установить более удобный для вас режим подбором резистора R2 или конденсатора С1. В связи с малым током потребления устройства, отдельный выключатель напряжения питания для индикатора не предусмотрен. Устройство работоспособно при снижении питающего напряжения до 2,8 вольта.

Изготовление зарядного устройства

1. Комплектация.
Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем индикатор разряда на универсальной монтажной плате. Для удобства наблюдения (большая частота импульсов), на время проверки, заменяем конденсатор С1 на конденсатор меньшей емкости (например 0,47 мкф). Подключаем схему к блоку питания с возможностью плавной регулировки постоянного напряжения в пределах от 2 до 6 вольт.

3. Проверка схемы.
Медленно понижаем напряжение питания индикатора разряда, начиная с 6 вольт. Наблюдаем на дисплее тестера величину напряжения, при которой включится детектор напряжения (DA1) и начнет мигать светодиод. При правильном подборе детектора напряжения, момент переключения должен состояться в районе 3,1 вольта.


4. Готовим плату для монтажа и пайки деталей .
Вырезаем необходимый для монтажа кусочек из универсальной печатной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки. Размер вырезаемой платы зависит от применяемых деталей и их компоновки при монтаже. Размеры платы на фото 22 х 25 мм.

5. Монтаж отлаженной схемы на рабочую плату
При положительном результате в работе схемы на монтажной плате, переносим детали на рабочую плату, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки проверяем монтаж. Схема может быть собрана любым удобным способом, в том числе и навесным монтажом.


6. Проверка рабочей схемы индикатора разряда
Проверяем работоспособность схемы индикатора разряда и ее настройки, подключив схему к блоку питания, а затем к тестируемому аккумулятору. При напряжении в цепи питания менее 3,1 вольта, индикатор разряда должен включиться.



Вместо применяемого в схеме детектора напряжения (DA1) PS Т529Н на контролируемое напряжение 3,1 вольта, возможно применить аналогичные микросхемы других производителей, например BD4731. Этот детектор имеет открытый коллектор на выходе (о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы), а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

В схеме также возможно применить детекторы на напряжение 3.08 вольта - TS809CXD, TCM809TENB713, МСР103Т-315Е/ТТ, САТ809ТТВI-G. Точные параметры выбираемых детекторов напряжения желательно уточнить в их datasheet.

Аналогичным образом можно применить и другой детектор напряжения на любое другое необходимое для работы индикатора напряжение.

Решение по второй части вопроса в п.3 приведенного комментария – работы индикатора разряда только при наличии освещенности, отложено по следующим причинам :
- работа дополнительных элементов в схеме, требует дополнительных затрат энергии от аккумулятора, т.е. страдает экономичность схемы;
- работа индикатора разряда днем, чаще всего, бесполезна, т.к. в комнате нет «зрителей», а к вечеру заряд батареи может и закончиться;
- работа индикатора в темное время суток ярче и эффективнее, а для быстрого отключения устройства имеется выключатель питания.

Применение, предложенного по п.2 комментария, отечественного операционного усилителя не рассматривал, по причине отладки режимов работы схемы по минимальным токам, в процессе доводки на монтажной плате.

Для решения задачи по п. 1 комментария, несколько изменил схему устройства «Ночник с акустическим включателем». Для чего включил положительную шину питания акустического реле через инвертор на VT3, с управлением от постоянно работающего фотореле.

Решил сегодня выложить еще одну статью. Опять таки не претендую на "открытие", поскольку все велосипеды изобретены уже давно! Просто однажды мы собирались на полёты, индикаторов разряда батерей в наличии не было вообще никаких, поэтому пришлось срочно придумывать и срочно делать девайсы, чтобы не загубить аккумуляторы. Да, устройства простенькие, в нех нет пищалки. Но супер яркие светодиоды хорошо видны даже в солнечный день и поэтому за сохранность аккумуляторов мы были спокойны. Я согласен, что девайсы получились простейшие, на уровне 80х годов. Тем не менее
с поставленой задачей они успешно справляются! Глядишь, кому то пригодятся!

Индикатор разряда Li Po аккумуляторов.

Известно, что Li Po аккумуляторам противопоказан разряд ниже 3,2 Вольт на банку. Разряд ниже этой величины приводит к скорому выходу аккумулятора из строя. Поэтому контроль напряжения предельного разряда каждой банки аккумулятора крайне желателен. Отсечка
двигателя регулятором скорости не может гарантировать своевременное отключение
аккумулятора. Поэтому имеет смысл применить дополнительную защиту, в качестве которой может использоваться светодиодный индикатор разряда аккумулятора.

В данной схеме в качестве компаратора применен прецизионный регулируемый стабилитрон TL431. Порог выставляется делителем напряжения в цепи УЭ (управляющего электрода) 15 ком (нижний по схеме резистор) и 4,3 ком (верхний резистор).
При этом соотношении резисторов срабатывание стабилитрона TL431 происходит при напря
жении банки 3,2 Вольт. Когда напряжение на аккумуляторе находится в пределах 3,2….4,2 В,
стабилитрон TL431 открыт, падения напряжения на нем недостаточно для работы светодиода и он погашен. Когда напряжение аккумулятора достигает 3,2 В, стабилитрон закрывается, а светодиод загорается от тока, протекающего через резистор 2 ком.

Индикатор состоит из трех одинаковых ячеек, что позволяет побаночно контролировать 1S, 2S и 3S аккумуляторы. При добавлении еще одной - двух ячеек, можно контролировать 4S и 5S
аккумуляторы. Светодиоды я использовал синие суперяркие, они, как мне кажется, наиболее
заметны днем. От звуковой сигнализации я отказался, поскольку звук слышно сравнительно недалеко, а увеличивать габариты и вес не хотел. Вполне достаточно светодиодов, тем более,
что после посадки модель все равно берешь в руки и незаметить включение светодиода просто
невозможно!

Штырьковые контакты я взял от негодной платы электроники винчестера с IDE интерфейсом.
Вставляются они, конечно, в балансирный разъем аккумулятора. Балансирные разъемы я
вывожу наружу из корпуса модели для зарядки аккумулятора без его извлечения из модели.
Закрепляю платку Индикатора на корпусе модели скотчем. Потом можно легко переставить
на другую модель.

Настройка. Настройку делаем каждой ячейки по очереди! Для настройки нужно три обычные батарейки по 1,5 Вольта, соединенные последовательно, переменный резистор 470 Ом и цифровой мультиметр. Переменный резистор 470 Ом включаем реостатом последовательно с плюсовым проводом батарейки. Таким образом получим источник напряжения 4,5 В.
Берем 2х контактный подходящий по шагу разъем и припаиваем к нему только два провода
от батарейки “ - ” и “ + ” . Как говорилось выше, “ + ” проходит через переменный резистор. Переменный резистор ставим в положение, соответствующее минимальному сопротивлению и подключаем разъем к соответствующим контактам нижней (или верхней) ячейки. Поскольку резистор установлен в положении минимального сопротивления, к ячейке приложено полное напряжение 4,5 В и светодиод гореть не должен. Затем разъем по очереди подключаем к двум другим ячейкам и убеждаемся, что все светодиоды погашены.
Затем плавно увеличиваем сопротивления переменного резистора, контролируя при этом
мультиметром напряжение на выходе резистора относительно минусового провода. При увеличении сопротивления резистора напряжение, подводимое к ячейке, начнет плавно уменьшаться и при достижении 3,18…..3,2 Вольт должен загореться светодиод. При уменьшении сопротивления резистора, т. е. при возрастании подводимого к ячейке напряжения выше 3,2 В, светодиод снова погаснет. Таким образом, переставляя разъем по очереди на соответствующие контакты, проверяем все ячейки. Порог включения можно изменять
подбором резистора 4,3 ком. При этом его можно составить из 2х резисторов, например

если поставить 2 ком + 2 ком = 4 ком (порог включения 3,14 В) , а 3,3 ком + 1 ком = 4,3 ком
(порог включения 3,18 В) У меня резистор 4,3 ком составлен из двух (3,3 ком + 1 ком) , что видно на фотографиях. Размеры печатной платы 3х ячеечного Индикатора 30 х 30 мм.
Регулируемый стабилитрон TL431 - широко распространенная деталь и продается в радиомагазинах. Кроме того, они используются практически в любом импульсном блоке питания (адаптере) для управления оптроном защиты.
Сделал несколько штук, работают нормально, обеспечивают своевременную индикацию.
Поэтому рекомендую для повторения авиамоделистами - радиолюбителями!

Общий вид.




Принципиальная схема.

Монтажка


Вид со стороны деталей. Размер платы 30 х 30 мм.

Вид со стороны дорожек. Размер платы 30 х 30 мм.

Светодиоды любые супер яркие, синего свечения. Синие лучше всего заметны в солнечный день.

Поделиться: